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ABSTRACT
In this work, we use direct numerical simulation and linear in-

teraction analysis to study the thermodynamic field generated by the

interaction of a shock wave with homogeneous isotropic turbulence.

Fluctuations in density, pressure, temperature and entropy can play

an important role in shock-induced mixing, combustion and energy

transfer processes. Data from high-fidelity simulations is used to

investigate the variation of thermodynamic fluctuations with flow

Mach number for a constant turbulent Mach number and Reynolds

number. As expected, density, pressure and temperature variances

attain large values at the shock, followed by, in general, a decaying

profile in the downstream flow. There are, however, cases with non-

monotonic variation with Mach number as well as local peaks in

density fluctuations behind the shock. These are explained in terms

of the contribution of the post-shock acoustic and entropy modes

and their cross-correlation to the thermodynamic variances. Budget

of the transport equations reveal interesting insight into the physics

governing the trends observed behind the shock wave. It is found

that the downstream evolution of the thermodynamic field is deter-

mined by competing dilatational and dissipation mechanisms. The

dominant mechanisms are identified for a range of conditions and

their implication for developing predictive models is highlighted.

INTRODUCTION
Shock waves are characteristic features in compressible flows,

specifically in the supersonic/hypersonic flow regime. In aerospace

applications, the effect of shock waves on the turbulent features in

a supersonic boundary layer is usually studied to understand the

physical mechanisms responsible for boundary layer separation, in-

creased heat transfer and high surface pressures, each of which

are unique engineering problems. The interaction of free turbu-

lence with a planar shock wave is a similar problem of interest,

exhaustive with physical insights on the effects of shock on turbu-

lence and vice-versa without additional complexities of mean shear,

streamline curvature, wall effects, etc. Shock-turbulence interac-

tion has implications in a variety of applications, to name a few,

supersonic/hypersonic propulsion systems, inertial confinement fu-

sion, shock wave lithotripsy, and astrophysical shock waves. In this

study, we focus on the interaction of a homogeneous/isotropic tur-

bulence interacting with a nominally planar shock wave, which is

the most basic form of shock-turbulence interaction.

Initial studies of shock-turbulence interaction were theoretical,

mostly employing linear analysis and are based on the Kovásznay

(1953) decomposition of turbulence. The theory aptly called as the

linear interaction analysis (LIA) was developed by Moore (1954)

and Ribner (1954) to analyze the interaction of acoustic and vortic-

ity waves respectively with an unsteady normal shock. The theory

was later put to use by many researchers to study problems involv-

ing shocks and free turbulence (e.g., Mahesh et al. (1996), Fabre

et al. (2001), Wouchuk et al. (2009), Quadros et al. (2016b)). Physi-

cal experiments utilizing grid-generated turbulence interacting with

a normal shock have also been carried out (cf. Agui et al. (2005)

and references therein) to study the underlying mechanisms respon-

sible for amplification of turbulent kinetic energy (TKE) and the

modification of length scales across the shock; purely driven by the

need to understand mixing enhancement across the shock and shock

wave/turbulent boundary layer interaction (SBLI). Several numeri-

cal simulations have been carried out to study the canonical shock-

turbulence interaction problem due to its geometric simplicity and

rich physics (e.g., Lee et al. (1997); Larsson et al. (2013); Ryu &

Livescu (2014)), with the focus of understanding the amplification

of turbulent kinetic energy and enstrophy, reduction in length scales,

and enhanced anisotropy in post-shock Reynolds stresses.

Compressible turbulent flows are characterized by the appre-

ciable changes in thermodynamic quantities such as density, pres-

sure and temperature fluctuations, which can be drastically ampli-

fied/altered on interaction with shock waves. The importance of un-

derstanding the thermodynamic fluctuations is well known as they

play a major role in turbulent mass flux, sound generation, turbulent

heat flux, and most importantly, in the turbulent transport of energy

between internal and kinetic energy components.

The objective of the present study is to perform a detailed in-

vestigation of the thermodynamic aspects of the canonical shock-

turbulence interaction. This work attempts to explain the ampli-

fication and evolution mechanisms of thermodynamic fluctuations

in canonical shock-turbulence interaction by systematic variation

of the governing parameters in the direct numerical simulations

(DNS): flow Mach number (M), turbulent Mach number (Mt ) and

Taylor-scale Reynolds number (Reλ ). The physical mechanisms

behind the variations in thermodynamic quantities are understood

using LIA and the extensive DNS data of Larsson et al. (2013). Ad-

ditional numerical simulations have been carried out to supplement

the existing data. A controlled study is carried out with purely vor-

tical incoming turbulence in LIA and mostly vortical with minimal

compressible fluctuations in the DNS data.
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Figure 1: Schematic of a single vorticity wave interacting with

a normal shock and yielding acoustic, entropy and vorticity

waves downstream of the shock wave.

METHODOLOGY
We use LIA and DNS to study the problem of a homoge-

neous/isotropic turbulence (HIT), being convected by a uniform

one-dimensional (1D) mean flow and interacting with a planar nor-

mal shock. Cartesian coordinate system is used where the shock-

normal direction is represented by x1 and the shock-parallel direc-

tions by x2 and x3. We use the notion of Favre averages (density-

weighted) for all quantities from the numerical simulations except

for density (ρ) and pressure (p). The Favre averages are denoted

as f̃ and the associated fluctuations are given by double primes. In

LIA, we use Reynolds averaged quantities denoted by an overbar

and their respective fluctuations denoted by single primes. When

comparing results between LIA and DNS, we make use of the as-

sumption f̃ ≈ f (linear limit). The upstream and downstream states

are denoted by subscripts ‘u’ and ‘d’ respectively.

Linear theory
A single vorticity wave in two-dimensions (x1,x2) of ampli-

tude Av and at an angle ψ with the x1−direction is being convected

by a 1D uniform mean flow of velocity u1,u towards the normal

shock as shown in Fig. (1). The shock deforms in response and the

position of the unsteady shock is given by ξ (x2, t). The downstream

non-acoustic waves (entropy and vorticity) are generated/refracted

at an angle ψ and are convected as ‘frozen’ waves by the down-

stream mean flow with velocity u1,d . The acoustic waves are gener-

ated at an angle ψ̃ and are either propagating or decaying (reduction

in amplitude), depending on whether the angle of the incident wave

is lower or higher than the critical angle.

The complete details of the LIA procedure can be obtained

from Mahesh et al. (1996), Quadros et al. (2016b) and Livescu &

Ryu (2016). In brief, the linearized Euler equations are used to

obtain the waveforms of the fluctuations in the upstream and down-

stream regions of the normal shock wave (modeled as a discontinu-

ity). Linearized Rankine-Hugoniot (RH) conditions are used as the

boundary conditions at the shock wave to obtain the transfer func-

tions of the post-shock fluctuations. The upstream turbulence is

represented as a super-position of 2D plane waves (Fourier modes),

with each of them independently interacting with the shock. The

post-shock field thus obtained is then integrated over all of the inci-

dent waves in a specified energy spectrum (von Kármán) to obtain a

statistical description of the turbulence behind the shock wave. It is

to be noted that the upstream turbulence considered in LIA is purely

vortical with no thermodynamic fluctuations.

Numerical simulations
The compressible Navier-Stokes (NS) equations are solved for

a perfect gas with ratio of specific heats γ = 1.4 and zero bulk

viscosity using the solution-adaptive finite difference Hybrid code

(Larsson et al. (2013)). A linear relationship is used for relat-

ing the viscous stresses (σi j) to the strain rates and Fourier’s law

is used for the heat flux (q j). Viscosity is assumed to follow a

power-law with temperature as µ = µre f (T/Tre f )
3/4. The homoge-

neous/isotropic turbulence is generated as per the method given in

Larsson et al. (2013) with the initial turbulent field specified using

the von Kármán velocity spectrum having peak energy wavenum-

ber of k0 = 4. The isotropic databases are temporally decayed till

‘realistic’ turbulence is obtained, followed by a blending of mul-

tiple realizations to form a sufficiently long database that satisfies

statistical convergence. Taylor’s hypothesis is used to convect the

blended database as the time-dependent inflow turbulence for the

shock-turbulence interaction domain. The inflow turbulence used

in the numerical simulations is quasi-vortical with minimal amount

of thermodynamic and compressible fluctuations. The turbulence

parameters immediately upstream of the shock are: turbulent Mach

number Mt,u = 0.15, Taylor-scale Reynolds number of Reλ ,u = 33

and dissipation-scale Reynolds number ReLε ,u ≈ 135.

Simulations with four different upstream Mach numbers (Mu =
1.23,1.50,2.50 and 3.50) have been carried out in the present study.

The computational grid is stretched in the shock-normal direction

(x1) to facilitate finer grid sizes near the shocks. A uniform grid

spacing in used for the shock-parallel directions (x2 and x3). The

grid sizes are varied to ensure that the anisotropically compressed

post-shock turbulence is captured as the shock strength varies be-

tween the cases. An optimized numerical sponge is attached at the

end of the domain to gradually dissipate the spurious oscillations

from the outflow. A non-reflecting outflow boundary condition and

a back pressure controller to adjust the mean shock position are

setup according to the method provided in Larsson & Lele (2009).

The present case details are tabulated in table (1) and the simula-

tions have been validated by comparing with the available data of

Larsson et al. (2013). We note that the current simulations have

grid resolution comparable to the viscous shock thickness for the

low Mach number cases and vary by a factor of 4− 5 for the high

Mach number cases.

Table 1: List of cases simulated in the present study

Mu Lε ,u/ηu
1 ∆x1,s/∆x2/3

2 δ/η3 Grid

1.23 45 0.75 0.90 882×3842

1.50 45 0.50 0.41 1042×3842

2.50 46 0.40 0.14 1142×3842

3.50 46 0.33 0.08 1313×3842

1Ratio of dissipation length scale to Kolmogrov length scale - a measure

of turbulence Reynolds number
2Ratio of shock-normal grid size at the shock to that of the shock-parallel

grid size - a measure of grid resolution at the shock
3Estimate for viscous shock thickness taken from Ryu & Livescu (2014):

δ/η ≈ 7.69Mt,u/(
√

Reλ ,u(Mu −1))
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RESULTS AND DISCUSSIONS

We compare thermodynamic variances (ρ ′2, p′2, T ′2, s′2) ob-

tained from DNS and LIA. We discuss the spatial variation of the

thermodynamic fluctuations first, followed by a discussion on the

effect of upstream Mach number. Kovásznay type mode decompo-

sition is followed to split the thermodynamic variances into their

respective elementary modes as given in Quadros et al. (2016a).

This enables to understand the underlying linear mechanisms in the

amplification of the thermodynamic fluctuations.

We have normalized the thermodynamic variances by the

square of their mean downstream values (ρ2
d / p2

d / T
2
d) except for

entropy. Entropy variance is normalized by the square of the gas

specific heat capacity at constant pressure (c2
p). Additionally, the

variances are normalized by the ratio of upstream turbulent kinetic

energy to the square of the upstream mean shock-normal velocity

(0.5M2
t /M2) so as to remove the effect of upstream turbulence in-

tensity. We normalize the streamwise direction by the peak energy

wavenumber (k0). This normalization procedure is used throughout

this article, unless otherwise specified. The shock-normal direction

in numerical simulations is shifted such that the mean shock loca-

tion (identified as the location where the mean dilatation is most

negative) is aligned with the mean shock location in LIA, i.e., cen-

tered at k0x1 = 0.

Spatial variation

The thermodynamic variances shown in figure 2 have almost

negligible values in the flow upstream of the shock wave. They

exhibit a jump to relatively high values across the shock, followed

by a rapid decay in the downstream flow, except entropy, which in-

stead shows a gradual decay. In DNS, the interaction yields locally

high values of the fluctuations in the shock region, which are due

to the unsteady oscillation of the shock wave and do not represent

turbulence.

Thermodynamic fluctuations predicted by LIA are comparable

to that obtained from the DNS for low Mach numbers (Mu < 2),

mainly due to the ‘nearly isentropic’ nature of the post-shock field

for these shock strengths. At the higher Mach numbers (Mu > 2),

there is a significant generation of entropy fluctuations. The density

variance shows a non-monotonic variation behind the shock, similar

to that of the shock-normal Reynolds stresses. This is also observed

in LIA till the acoustic adjustment region (k0x1 . 2), beyond which

there are differences between DNS and LIA due to the viscous de-

cay (which is not considered in the LIA framework). DNS pressure

fluctuations appear to approach a finite asymptotic value in the far-

field (k0x1 → ∞) and is comparable to that obtained from LIA. The

fact that there are pressure fluctuations that are unaffected by vis-

cous decay is entirely consistent with the notion that the shock pro-

duces a far-field radiating sound field. There is a slight mismatch in

p′2 in the region immediately behind the shock (around k0x1 = 1)

indicating the effect of the non-linear mechanisms in DNS; how-

ever, the effect is minimal.

The temperature variances in DNS show a rapid decay immedi-

ately behind the shock, similar to the inviscid decay of the pressure

fluctuations and a gradual decay approximately after the acoustic

adjustment region (k0x1 & 1). LIA, on the other hand, predicts the

rapid decay after the post-shock amplification but followed by a

constant far-field value after the adjustment region. The post-shock

entropy fluctuations as predicted by LIA match the DNS values ob-

tained immediately behind the shock, but do not reproduce the vis-

cous decay observed in DNS in the downstream region.
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Figure 2: Spatial variation of the thermodynamic variances

for Mu = 1.5 (red - solid lines and squares) and 3.5 (blue -

dashed lines and circles). Lines represent LIA solution and

symbols represent DNS results taken from present simula-

tions. Vertical dotted and dashed lines represent the bounds

of the mean shock thickness for Mu = 1.5 and Mu = 3.5 cases

respectively. Note that the entropy variance generated by the

M = 1.5 shock is scaled up by a factor of 5 to appear in the

same plot.

Kovásznay modes
The Kovásznay modes of entropy and acoustics (or pressure)

are fundamentally different in terms of their evolution behind the

shock wave. The majority of the acoustic energy decays with dis-

tance from the shock wave; in particular, those associated with the

single-wave interactions exceeding the critical angle. On the other

hand, the entropy mode generated at the shock propagates down-

stream without any change in amplitude as per the linear inviscid

framework adopted by LIA.

The LIA solution in the post-shock region is a superposition of

acoustic, entropy and vorticity waves, with a collection of orienta-

tion angles and wavelengths. The density variance is thus (since the

pure vorticity contribution, ρ ′
d,v = 0),

ρ ′
d
ρ ′

d
= (ρ ′

d,a +ρ ′
d,e)

2 = ρ ′
d,aρ ′

d,a +ρ ′
d,eρ ′

d,e +2ρ ′
d,aρ ′

d,e (1)

which allows us to decompose the full density variance into

a pure acoustic contribution (“acoustic-acoustic”, the first term), a

pure entropy contribution (“entropy-entropy”, the second term), and

a combined acoustic/entropy contribution (“acoustic-entropy”, the

third term). A similar decomposition is done for the temperature

variance.

Figure 3 shows the components of density and temperature

variance for the low shock strength (Mu = 1.5) and the high shock

strength (Mu = 3.5) cases. The “acoustic-acoustic” component in

both the variances has large values immediately behind the shock

and decay in the streamwise direction, similar to p′2. The “acoustic-

entropy” correlation also shows a decaying pattern and vanishes be-

yond the acoustic adjustment region (0 < k0x1 & 1). The “entropy-

entropy” component is constant with the streamwise direction, and
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Figure 3: Spatial variation of the Kovásznay type modal com-

ponents in ρ ′2
d and T ′2

d from LIA.

is relatively small in magnitude for the low Mach number case, such

that the far-field density and temperature variances are mostly due

to the contribution of the propagating acoustic waves.

Data plotted for the Mach 3.5 interaction in figure 3 (c, d)

shows a significantly large contribution of the entropy mode to the

density and temperature variances. The far-field values of ρ ′2 and

T ′2 are primarily determined by the “entropy-entropy” component,

which is once again invariant with distance from the shock. All

the components are positive for the temperature fluctuations, and

they together give a monotonic decay of T ′2 to its far-field value.

On the other hand, the “acoustic-entropy” component in ρ ′2 is of

opposite sign when compared to its counterpart in the temperature

fluctuations. The total contribution of the “acoustic-acoustic” and

the “entropy-entropy” is balanced by the largely negative “acoustic-

entropy” term in the acoustic adjustment region resulting in a non-

monotonic variation to its far-field value.

The “acoustic-acoustic” component in density variance differ

by a factor of (γ − 1)2 and the “acoustic-entropy” component is

by a factor of (γ − 1) against their respective counterparts in the

temperature variance, indicating that LIA assumes the post-shock

field to be isentropic, even for high Mach numbers.

Effect of shock strength
We next plot the post-shock thermodynamic variances as a

function of upstream Mach number in figure 4 at a particular lo-

cation using the data from Larsson et al. (2013) (squares and di-

amonds), the present simulations (circles) and LIA (lines). For a

constant turbulent Mach number and Reynolds number, the under-

lying trend in the DNS data against Mach number can be identified

using LIA. The variation of far-field values against Mach number is

usually of interest however, DNS and LIA solutions vary in the far-

field due to the effects of viscous dissipation in DNS. In this regard,

we choose the location k0x1 = 1, where the “acoustic-entropy” cor-

relation almost vanishes in LIA and does not have significant effects

of the viscous terms in DNS. This location is in the rapidly decay-

ing portion of the post-shock thermodynamic field, in between the

near-field (k0x1 = 0+) and far-field (k0x1 = ∞) values predicted by

LIA, and is able to bring out the quantitative trends in the variation

of the thermodynamic variances with Mach numbers.

As expected, the thermodynamic variances show a monotonic

increase with Mach number, i.e. a stronger shock generates higher

amplitudes of thermodynamic fluctuations. All thermodynamic

variances computed from DNS follows the LIA prediction closely

for the entire range of shock strengths. There are, however, quanti-

tative differences between the solutions for the pressure and density

variances, due to the effect of non-linear mechanisms in that loca-

tion (see figure 2 (b)). There are large variations between LIA and

DNS results as the turbulent Mach number is increased, and a good

match between the two when the Reynolds number is increased,

which is in agreement with the assumptions of LIA.

Pressure fluctuations appear to quickly rise to a finite value

even for weak interactions (Mu < 1.5) and then saturate at high

Mach numbers. The post-shock entropy fluctuations appear to in-

crease as the square of the upstream Mach number. As a result, they

attain small values for weak shock interactions and rapidly increase

with Mach number beyond 2. The density and temperature vari-

ances show a variation which is a combination of the acoustic and

the entropy fluctuations. This is distinct in the density fluctuations

(LIA data) where the variation is similar to the pressure fluctuations

for Mu < 1.65 and follows the trend of the entropy fluctuations for

Mu > 2. The DNS data (see the variation of Mt,u = 0.22 data) also

follows this trend obtained from LIA.

The near-field thermodynamic variances (obtained from LIA)

are also plotted against Mach number in figure 4. Near-field density

variances attain a peak value at low Mach numbers (Mu ≈ 1.2) and

reduce in amplitude as the shock strength increases, till they vanish

at very high Mach numbers. Near-field values of pressure variances

show a similar trend, except that they saturate to a constant value

at very high Mach numbers. Temperature variances are found to

be monotonically increasing as the shock strength increases in the

near-field region, and have values larger than at the k0x1 location.

LIA predicts entropy fluctuations to be spatially invariant and thus

the trend is observed to be the same as k0x1 = 1 location.

Transport of the variances
The physical mechanisms underlying the post-shock evolution

of the thermodynamic variances is next analyzed in terms of the

budgets of their respective transport equations. The transport equa-

tions are obtained by multiplying the thermodynamic fluctuations

with their respective transport equation, followed by a suitable av-

eraging process. The complete transport equations for the variances

can be found in Gerolymos & Vallet (2014). For completeness, the

transport of pressure variance is given in equation (2),

∂t(p′2)︸ ︷︷ ︸
Temporal

+∂x j
(ũ j p′2)

︸ ︷︷ ︸
Convection

=−∂x j
(p′2u′′j )+2(γ −1)[∂x j

(p′q j)]
︸ ︷︷ ︸

Diffusion

−2p′u′′j ∂x j
p −2(γ −1)p′2∂x j

ũ j

+2(γ −1)p′σi j∂x j
ũi︸ ︷︷ ︸

Production

−2γ p p′∂x j
u′′j − (2γ −1)p′2∂x j

u′′j︸ ︷︷ ︸
Dilatation

−2(γ −1)q j∂x j
p′

︸ ︷︷ ︸
Dissipation

+2(γ −1)p′σi j∂x j
u′′i︸ ︷︷ ︸

Triple correlations

(2)

The other variances also do have similar terms such as diffusion by

velocity fluctuations, production due to mean gradients, correlations
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Figure 4: Variation of thermodynamic variances against Mach

number at the locations, k0x1 = 1 and the near-field k0x1 = 0+

(only for LIA). Squares (Reλ ,u = 40) and diamonds (Reλ ,u =
75) are from the data of Larsson et al. (2013) and circles

(Reλ ,u = 33) are from the present simulations. Color leg-

end: Mt,u = 0.15/0.16 (red), Mt,u = 0.22 (blue), Mt,u = 0.31

(green), Mt,u = 0.38 (pink).
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with fluctuating dilatation, and triple correlations.

Figure 5 shows the budget of the terms in the transport equation

of the density variance for two shock strengths, computed as part

of the current work. The convection of density variance (ũ∂x1
ρ ′2)

is found to be balanced by the correlation of density fluctuations

with the fluctuating dilatation (ρ ′∂x j
u′′j ). It is found that the other

terms (production, diffusion, and triple correlations) do not have

significant contribution in the budget. It is to be noted that transport

of density variance does not have any viscous dissipation terms.

The DNS data shown in figure 6 (a) corresponds to the trans-

port of pressure variance where, the correlation of dilatation with

pressure is found to be the dominant term, similar to density vari-
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Figure 6: Budgets of the dominant terms in the transport equa-

tion of (a) p′2 and (b) s′2 for four different Mach numbers.

Normalization is as mentioned in the caption of figure 5.
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Figure 7: Budgets of all terms in the transport equation of

T ′2 for Mach numbers: Mu = 1.50 and Mu = 3.50. The vari-

ances are normalized as mentioned in the caption of figure 5.

Vertical dashed lines (around k0x1 = 0.3) represent the down-

stream edge of the mean shock.

ance. On the other hand, the DNS data shows that the entropy vari-

ance to be governed by dissipation mechanisms only. Figure 6 (b)

shows the balancing of the convection of entropy variance by its

dissipation term ((q j/T )∂x j
s′′) for all Mach numbers. Entropy vari-

ance is not affected by the acoustic mode and thus, does not have

any dilatational correlations.

Transport of temperature variances is governed by dilatational

correlations at all Mach numbers, according to the DNS data. Fig-

ure (7) shows the dominant terms in the budget of temperature vari-

ance, where it is found that the dissipation term has a small but finite

contribution to the budget at high Mach numbers. Similar to other

variances, the contribution of production, diffusion, and third order

correlation terms are insignificant.

SUMMARY
In this work, we presented a comparison of the thermody-

namic fluctuations generated by canonical shock-turbulence inter-

action between LIA and DNS. A large parameter space including a

range of Mach number, turbulent Mach number and Reynolds num-

ber is considered, and available DNS data is complemented with

new cases computed here. The linear interaction analysis based on

Kovásznay mode decomposition of the disturbances is applied un-

der the linear inviscid framework and is further used to investigate

the thermodynamic field in terms of their component Kovásznay

modes.

It has been known that pressure, density and temperature fluc-

tuations are produced in a shock-turbulence interaction and they

decay rapidly in the downstream flow. This is primarily associ-

ated with the acoustic mode, and reciprocates the exponential de-
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cay of the acoustic energy generated at the shock. ‘Representative’

far-field values show steady increase in magnitude with increasing

strength of interaction. This is essentially due to the entropy mode

contributions to the density and temperature fluctuations. There are

interesting non-monotonic trends, for example, in the variation of

the near field p′2 and ρ ′2 values with Mach number. The density

variance generated by strong shocks (M ≥ 2.5) also show a non-

monotonic variation (and a local peak in magnitude) with distance

from the shock wave. These are caused by the interplay between

acoustic and entropy modes generated by the interaction.

Transport equations are written to investigate the evolution of

the thermodynamic variances downstream of the shock interaction.

DNS data is used to compute the budget of the source terms for

a range of Mach numbers. We identified that the transport of the

thermodynamic variances in the post-shock region to be dominated

by dilatational and dissipative mechanisms. The transport equations

can be approximated to a suitable degree in the form of,

ũ∂x1
ρ ′2 ≈−2ρρ ′∂x j

u′′j , (3)

ũ∂x1
p′2 ≈−2γ pp′∂x j

u′′j , (4)

ũ∂x1
T̃ ′′2 ≈−(2/cv)pT ′′∂x j

u′′j − (2/cv)q j∂x j
T ′′, (5)

ũ∂x1
s̃′′2 ≈−2(q j/T )∂x j

s′′ (6)

where, cv is the gas specific heat capacity at constant volume.

Dilatation effect is found to be the primary source term for the

transport of ρ ′2, p′2 and T̃ ′′2 at low Mach numbers. Transport equa-

tions for the thermodynamic variances obtained from the linearized

inviscid equations also show that the dilatation correlation to be the

only source term balancing the convective term without any dissipa-

tive mechanisms. The dilatation term can be modeled effectively us-

ing the exponential decay of acoustic energy generated by the shock

wave. A differential equation model to predict the post-shock varia-

tion of p′2 can be derived using LIA. A similar approach is expected

to work for ρ ′2 and T̃ ′′2 at low Mach numbers where the contribu-

tion of entropy component is small. The extensive data presented

for ρ ′2, p′2, T ′2 will be valuable for the model validation.
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