
10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017

Unsteady turbulence cascades and their effects on the T/NT interface
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ABSTRACT
We identify three different types of turbulence cascade for con-

stant density incompressible 3D turbulence all of which imply a par-
ticular turbulence dissipation scaling: the well-known Kolmogorov
equilibrium cascade and two different types of non-equilibrium cas-
cade with two different turbulence dissipation scalings. Turbulence
dissipation scalings are closely related to the scalings of the local
entrainment velocityue of the turbulent/non-turbulent (T/NT) inter-
face in an axisymmetric and self-similar turbulent wake. The tur-
bulence dissipation scaling implied by the Kolmogorov equilibrium
cascade is consistent with a Kolmogorov scaling ofue whereas the
different non-equilibrium dissipation scaling present in the case of
one of the two types of non-equilibrium cascade is consistent with
a different scaling ofue.

INTRODUCTION
The equilibrium Richardson-Kolmogorov cascade applies in

cases where the incompressible Navier-Stokes equation is forced in
a way which keeps the turbulence steady without significant large-
scale oscillations. This situation can be realised in Direct Numerical
Simulations (DNS) of periodic turbulence forced to achieve such
particular statistical stationarity but it is not known how widely it
can be found in nature and engineering. On the other hand it is
now known that Kolmogorov equilibrium is absent in various grid-
generated turbulent flows, turbulent shear flows, and periodic turbu-
lence which is either decaying or with significant large-scale oscil-
lations (Vassilicos, 2015; Goto & Vassilicos, 2015; Dairay et al.,
2015; Obligado et al., 2016). In these unsteady turbulent flows
the turbulence dissipation scaling can be different over a very sig-
nificant extent in time or space (according to case) from the well-
knownε =Cε K3/2/L scaling whereε is the turbulence dissipation
rate per unit mass,K is the turbulent kinetic energy,L is an inte-
gral length-scale andCε is a dimensionless number which is con-
stant in the Kolmogorov equilibrium phenomenology. Even though
these unsteady flows can be quite different from each other, the
same non-equilibrium dissipation scaling can be found in all of
them, namelyCε ∼ Re0/ReL whereRe0 = U∞Lb/ν (in terms of
an inlet/initial velocityU∞ and lengthLb and the kinematic viscos-
ity ν) and ReL =

√
KL/ν , i.e. ε ∼ U∞LbK/L2 and equivalently

Cε ∼
√

Re0/Reλ (whereReλ is the Taylor length-based Reynolds
number).

In the next section we study the non-equilibrium cascade in
periodic decaying turbulence. Both dissipation scalings mentioned

in the previous paragraph are present during periodic turbulence de-
cay in different time ranges and we show how they are related to two
different types of non-equilibrium (unsteady) turbulence cascades.
Whilst Kolmogorov equilibrium impliesε ∼ K3/2/L, the inverse is
not true and this scaling appears in the long-time regime after the
ε ∼ U∞LbK/L2 scaling regime even though the cascade is not in
equilibrium at any time during decay.

In the section after next we demonstrate that the turbulence
dissipation scalingε ∼ K3/2/L is consistent with a Kolmogorov
scaling ofue whereas the non-equilibrium dissipation scalingε ∼
U∞LbK/L2 is consistent with a different scaling ofue. We also
present results from a DNS of a spatially developing axisymmetric
and self-similar turbulent wake which supports this conclusion and
the assumptions that this conclusion has been based on.

UNSTEADY TURBULENCE CASCADES
To study the turbulence cascade in homogeneous or periodic

turbulence one often starts from the scale-by-scale energy balance

∂K>(k, t)
∂ t

= Π(k, t)− ε>(k, t) (1)

where the notation used is defined in terms of the energy spectrum
E(k, t): K>(k, t) ≡

∫ ∞
k E(k, t)dk and ε>(k, t) ≡ 2ν

∫ ∞
k k2E(k, t)dk

are, respectively, the turbulent kinetic energy and the turbulence
dissipation in wavenumbers larger thank and Π(k, t) is the inter-
scale flux of turbulent kinetic energy from wavenumbers smaller to
wavenumbers larger thank (we omit “per unit mass” for brevity).
Kolmogorov stationarity/equilibrium is a situation where
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∣

∣

∣

∂K>(k, t)
∂ t

∣

∣

∣

∣

≪ ε>(k, t) (2)

and therefore

Π(k, t)/ε>(k, t)≈ 1. (3)

The balanceΠ(k, t)≈ ε>(k, t) is a cornerstone property of the Kol-
mogorov equilibrium cascade in the range of intermediate wavenu-
bers where this cascade is present when it exists. Given the scalings
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Figure 1. Interscale energy flux to wavenumbers larger thank di-
vided by the turbulence dissipation in wavenumbers larger thank
as a function of number of turnover timest̂. The overbar signi-
fies an average over ten 10243 DNS runs; curves from black to
grey and from the lower to the upper parts of the plot correspond
to k = 4,8,16,32,64,128.

of the turbulent kinetic energy input rate at the large scales, it im-
plies the well-known dissipation scalingε =Cε K3/2/L whereCε is
a constant dimensionless number.

We have run a total of 311 DNS of decaying three-dimensional
Navier-Stokes turbulence in a periodic box with values of the Tay-
lor length-based Reynolds number up to about 300 and an energy
spectrum with a wide wavenumber range of close to−5/3 power-
law dependence at the higher Reynolds numbers. On the basis of
these runs we have found a critical timetc when the ratio of in-
terscale energy flux to high-pass filtered turbulence dissipation, i.e.
Π(k, t)/ε>(k, t), changes from decreasing to very slowly increasing
in the inertial range (see figure 1). This ratio’s departure from 1 is a
measure of how unsteady the cascade is at wavenumberk. Clearly
there are two types of unsteady cascade, one for times beforetc
when the cascade is increasingly unsteady as time progresses and
one for times larger thantc when the cascade remains unsteady and
only very slowly becomes slightly less so as times progresses.

The timetc is also the time when the scaling of the turbulence
dissipation changes fromCε ∼

√
Re0/Reλ to Cε ≈ Const (see fig-

ure 2). Even though the customary theoretical basis forCε =Const
is a statistically stationary cascade where large scale energy flux
balances dissipation, this is not the case thoughout the entire time-
range of integration in all our DNS runs. The turbulence cascade
is unsteady in different ways in the two time ranges demarcated
by tc and the turbulence dissipation scalings are different in these
two time ranges accordingly. A theoretical framework for making
sense of these two non-equilibrium turbulence dissipation scalings
has been worked out and will be included in the conference presen-
tation if time allows.

THE LOCAL ENTRAINMENT VELOCITY OF THE
T/NT INTERFACE

We now concentrate our attention on spatially developing ax-
isymmetric and self-simialar turbulent wakes. A characteristic local
entrainment velocityue of the T/NT interface can be defined in such
a flow in terms of the time-averaged areaA of the fully turbulent re-
gion in a plane normal to the flow’s axis of symmetry and the time-
averaged lengthL of the T/NT interface in the same plane. Indeed,
it makes sense to writeU∞dA/dx=L ue whereU∞ is the freestream
velocity andx is the coordinate in the streamwise direction of the
axis of symmetry. IfA(x) scales with the wake widthδ (x) of the
turbulent wake, i.e. A(x) ∼ δ 2, thenU∞δdδ/dx ∼ L ue. This
simple and immediate relation is significant because the modified
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Figure 2. Log-log plot ofCε (t)/
√

R0 versusRλ (t). The dotted
line in the plot representsRλ

−1 and the overbar is an average over
many DNS runs. Red 20483, blue 10243, grey 5123, black 2563

and light blue 1283 DNS. The insert is a log-log plot ofCε (t) versus
Rλ (t). The thick part of the lines marks the same time range as the
thick part of the lines in figure 1.

Townsend-George theory of free turbulent shear flows (see Dairay
et al, 2015) implies that the wake width’s scaling withx is sensi-
tive to the turbulence dissipation scalings, which means thatL ue

is different forCε ∼
√

Re0/Reλ and forCε ≈ Const. If we also
assume that the T/NT interfacial line in a lateralx = const plane
has a well-defined fractal dimensionD (Sreenivasan et al., 1989) so
thatL ∼ δ (ηI/δ )1−D where, in agreement with Corrsin & Kistler
(1955),ηI ∼ ν/ue, then one can derive scalings forue. The dissi-
pation scalingCε ≈Const leads toue ∼ uη if D = 4/3 (as required
by theν3/4 scaling of the Kolmogorov length-scaleηK , see Sreeni-
vasan et al., 1989) and the dissipation scalingCε ∼

√
Re0/Reλ leads

to ue/uη ∼ Re1/4−(D−1)/D
0 ( x−x0

θ )1/8 whereuη is the Kolmogorov
velocity, Lb in Re0 = U∞Lb/ν is the size of the wake-generating
body, x0 is a virtual origin andθ is the momentum thickness. In
this second case the local entrainment velocity is clearly different
from uη .

We have run a DNS of a spatially developing axisymmetric and
self-similar turbulence wake which is identical to the one of Dairay
et al. (2015) and we have verified the assumptions and conclusions
of the previous paragraph’s analysis. Some of the results are given
in figures 3, 4 and 5 but more will be presented at the conference.
Note that the turbulence dissipation scaling isCε ∼

√
Re0/Reλ in

the range 10≤ x/Lb < O(100) if the Reynolds number is high
enough (Dairay et al., 2015; Obligado et al., 2016) and that it can
be expected to change toCε ≈ const further downstream.

CONCLUSION
It is likely that the most common nonlinear turbulence cascades

in nature and engineering are unsteady (non-equilibrium) cascades.
We have identified at least two types of unsteady turbulence cas-
cades, each one with a different turbulence dissipation scaling law
attached to it. The type of unsteady cascade is therefore an impor-
tant element in the statistics of the T/NT interface. In the case of ax-
isymmetric self-similar turbulence wakes (and perhaps also in other
flows) different types of unsteady turbulence cascade are correlated
with different scalings of the local entrainment velocity of the in-
terface. One can predict these scalings if one knows the turbulence
dissipation scalings in the region of the flow considered.

More details on the work summarised here can be found in
Goto & Vassilicos (2016) and Zhou & Vassilicos (2017).
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Figure 3. A(x)/δ 2(x) versusx/Lb.
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Figure 4. Time-average numberN(ηB) of squares of side-sizeηB

needed to cover the T/NT interfacial line in the 2D planex/Lb = 60
versusηB/Lb. The fractal dimension is well-defined over one
decade and found to equal 6/5± 0.02 in the rangex/Lb = 50 to
x/Lb = 100. The valuesηB = ηK , λ andδ are indicated for refer-
ence.
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Figure 5. L /L(ηI) versusx/Lb, whereL(ηI)∼ δ (ηI/δ )1−D and
ηI = ν/ue.
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