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ABSTRACT
A numerical and experimental study of a NACA 0025 airfoil at

a Reynolds number of 105 and two angles of attack (5◦ and 12◦) is
conducted. In this investigation, large-eddy simulation is employed
to compute the separation, transition, and reattachment behaviour of
the shear layer. Good agreement between the numerics and experi-
ment is found. A laminar separation bubble is formed at an angle of
attack of 5◦ whereas no reattachment occurs at the larger angle of
attack. Receptivity effects are likely the cause of a slightly overpre-
dicted laminar separation bubble length, as these are not accounted
for in the computations. Linear stability analysis is performed on
the base velocity profiles obtained from the computations and ex-
periment. Despite excellent boundary layer profile agreement, it is
found that fairly large differences in the growth rate spectra are ob-
tained. A sensitivity analysis using a matrix perturbation technique
is discussed and shows that the Orr-Sommerfeld operator, which
governs the stability behaviour, is highly sensitive to base flow per-
turbations. This acute sensitivity makes direct comparisons of sta-
bility behaviour a challenge, and this sensitivity should be taken
into account.

INTRODUCTION
Unmanned aerial vehicles (UAVs), small-scale wind turbines,

and low-speed aircraft operate in the low Reynolds number regime,
Rec < 500,000 (DeLaurier (2003)), where Rec is the chord-based
Reynolds number. Unlike high Reynolds number flow, the lami-
nar boundary layer often separates due to a strong adverse pressure
gradient. The separated flow can transition to turbulence and poten-
tially reattach to the airfoil surface thus forming a laminar separa-
tion bubble (LSB) (Tani (1964)).

High-fidelity computational methods, e.g., large-eddy simula-
tion (LES), provide a much more detailed view of the separation
and transition events. LES also enables computation of aerody-
namic noise (Kim et al. (2006)) and can inform flow control strate-
gies (You et al. (2008)). LES has also seen success with low-
Reynolds number airfoils (Eisenbach & Friedrich (2008); Kojima
et al. (2003)) and in the prediction of stall behaviour and laminar
separation bubbles (Alferez et al. (2013); Mary & Sagaut (2002)).
The higher resolution obtained by LES can be advantageous for lin-
ear stability studies, as the resulting eigenvalue spectra have been
shown to be very sensitive to experimental data scatter (Boutilier &
Yarusevych (2013)).

The sensitivity of one-dimensional linear stability analysis has
been reported in several papers (Bottaro et al. (2003)). Large devi-
ations in the eigenvalue spectrum representing the growth rate have
been attributed to the non-normality of the linear stability opera-
tor (Reddy et al. (1993)), because the non-normal matrix is one
which does not commute with its adjoint, AA? 6= A?A. These matri-
ces, therefore, have nonorthogonal eigenfunctions. The analysis of
these types of operators has been performed using matrix perturba-
tion techniques such as the ε-pseudospectrum.

The present investigation is a numerical and experimental
study of a NACA 0025 airfoil at a Reynolds number of 105; well
within the low Reynolds number regime. Numerical simulations
are employed to investigate the transient shear layer at two angles of
attack; AOA ∈ [5◦,12◦]. Of particular interest were boundary layer
separation, existence of laminar separation bubble, and stability and
transition. Linear stability analysis was performed on the separated
shear layer profiles obtained from LES and experiment. The linear
stability analysis is complemented with a sensitivity analysis of the
stability equations.

METHODOLOGY
The computational procedure for the LES investigation is de-

scribed. In addition, the Chebyshev collocation method for the so-
lution of the stability equations is discussed.

Numerical Methodology
The numerical computations were performed by solving the

filtered Navier-Stokes equations for large-eddy simulation. For in-
compressible flow, the governing equations are:
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where f denotes a filtered variable. The SGS stress tensor, τi j, is
closed using an eddy viscosity approach, τi j =−2νrSi j, where νr is
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the eddy viscosity. A subgrid-scale turbulence kinetic energy model
was employed, where k = 1

2 ∑i(τii) is the SGS kinetic energy, whose
transport equation is
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The eddy viscosity and dissipation rate, ε , are evaluated as follows
to close the system:

νr =Ckk1/2
∆ ε =Cε k3/2/∆, (4)

where Cε = 1.048 and Ck = 0.094.
The temporal and convective terms were discretized using a

second order backward implicit time stepping scheme and second
order TVD scheme, respectively. An adaptive time stepping scheme
was employed to maintain a CFL number of Co < 0.7 through-
out the domain. The PISO algorithm was used for the pressure-
momentum coupling. The airfoil surface was defined as a no-slip
boundary condition and a periodic boundary condition was applied
to the lateral boundaries, spaced c/2 apart, where c is the chord
length. The inlet and outlet were assigned laminar inflow and zero-
gradient outflow conditions, respectively.

The computations were performed on 64-128 processors us-
ing the Blue Gene/Q (BGQ) and General Purpose Cluster (GPC)
at Scinet (Loken et al. (2010)). Approximately 7 hours were re-
quired to compute one convective time-scale, tconv = c/U∞. Statis-
tics were observed for 33tconv. Statistics of the flow started being
computed at approximately t = 17tconv for all cases considered. A
block-structured C-mesh with 32× 106 cells was employed with
mesh refinement concentrated in the wake and around the NACA
0025 airfoil with chord length c = 0.3m. For wall-resolved LES, it
is well accepted that the required mesh resolution, which has been
achieved in all cases (Fig. 1), is ∆x+ ≈ 100, ∆y+ ≈ 2, and ∆z+ ≈ 20
(Sagaut (2006); Mary& Sagaut (2002)). In addition to the global
x− y coordinate system, some results are presented with respect
to a local x′− y′ coordinate system, with the origin at the leading
edge, x′ aligned with the chord and increasing toward the trailing
edge, and y′ aligned with the local wall-normal direction on the air-
foil suction side. Another measure of the quality and resolution of
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Figure 1: The near-wall mesh spacing for the NACA 0025 at
AOA = 10◦.

the simulations is the resolved-to-turbulent kinetic energy ratio, γ:

γ =
kres

kSGS + kres
(5)

where kres is the turbulent kinetic energy in the resolved scales, and
kSGS is the the subgrid-scale kinetic energy. A well-resolved LES
should resolve at least 80% of the turbulent kinetic energy, accord-
ing to Pope (2004). Figure 2 shows the kinetic energy ratio at sev-
eral locations.
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Figure 2: Kinetic energy ratio, γ , at several locations. AOA =
10◦.

Linear Stability Analysis
Linear stability analysis (LSA) was performed on the velocity

profiles from LES and hot-wire experiments. Small velocity and
pressure perturbations are considered, where

vvv(xxxiii, t) =VVV (y)+ vvv′′′(xxxiii, t), p(xxxiii, t) = P+ p′(xxxiii, t). (6)

The stability of the mean base flow is assessed by its response to
wavelike perturbations expressed as,

v′(xi, t) = ṽ(y)ei(αx−ωt) (7)

where α = αr + iαi is the complex wavenumber and ω is the real
frequency. Formulations in which the wavenumber is complex cor-
respond to the spatial stability problem, where the solution can
grow or decay in space and only oscillate in time at a particu-
lar location. By substituting the above decomposition and nor-
mal mode wavelike perturbation in the Navier-Stokes equations, the
Orr-Sommerfeld Equation is obtained:
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The growth rate of the perturbations is determined by eigenvalues
with −αi.
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This study employed a Chebyshev collocation approach for the
solution of Eqn. 8. The semi-infinite domain of the shear layer
profile, y∈ [0,∞), was mapped onto the domain η ∈ [−1,1] by using
an algebraic mapping function, f (η). Algebraic mappings have
been reported as superior to logarithmic mappings by Boyd (2001)
and Schmid and Henningson (2001).

The nth Chebyshev polynomial of the first kind is

Tn(η) = cos(ncos−1
η). (9)

The transformed equations are solved at the Gauss-Lobatto points.
The vertical velocity fluctuation in (8) is expressed as a Chebyshev
polynomial series,

ṽ(η) =
N

∑
n=1

anTn(η) (10)

with boundary conditions in Chebyshev space (Schmid and Hen-
ningson (2001)),
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Substituting the above Chebyshev expansions into the Orr-
Sommerfeld equation yields a polynomial eigenvalue problem with
matrix coefficients, C j (Bridges (1984); Liou (1992)). For the Orr-
Sommerfeld equation, a fourth order polynomial with α as the com-
plex parameter is obtained (Bridges (1984)):

DDD444(α)aaa = 0 (12)

where,

DDD444(α) =CCC000α
4 +CCC111α

3 +CCC222α
2 +CCC333α +CCC444. (13)

The polynomial eigenvalue problem can be reformulated using the
companion matrix method to yield a complex generalized eigen-
value problem:
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The above approach was used to solve the viscous spatial stability
problem defined by the Orr-Sommerfeld equation.

RESULTS
The following describe the numerical and experimental results.

A detailed comparison is presented in Ziadé et al. (2017).

Flow Features
Instantaneous flow field results are visualized using the Q-

criterion. The shear layer and wake structure for the two angles

(a)

(b)

Figure 3: Q = 2500 contours - a) AOA = 5◦, b) AOA = 12◦,

of attack considered, AOA ∈ [5o,12o], is presented in Fig. 3a and
Fig. 3b.

Flow separation occurs shortly downstream of the leading edge
for the two angles of attack considered. A wide range of scales
is observed, with larger structures identified at the higher angle of
attack. The extent of the wake increases with increasing angle of
attack. An isometric view of the airfoil at AOA = 5◦ is shown in
figure 4 which shows a vortex roll-up which rapidly breaks down
to three-dimensional turbulence. This initial vortex is largely two-
dimensional, spans the width of the airfoil, and is due to a two-
dimensional Tollmien-Schlichting wave. Before final breakdown,
hairpin structures are also observed in the transitional region.

Figure 4: Isosurface of Q = 2500s−2 at AOA = 5◦.

Laminar Separation Bubble
The mean surface pressure distribution on the airfoil suction

surface can help determine the separation point. As Carmichael
notes (Carmichael 1981), a boundary layer that fails to reattach dis-
plays a nearly constant static pressure extending from the separation
point to the trailing edge. On the other hand, a rapid pressure recov-
ery indicates that the flow has transitioned and reattached to the air-
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foil, leading to a laminar separation bubble. The coefficient of pres-
sure, Cp = (p− p∞)/(0.5ρU2

∞), is presented figure 5. Both angles
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Figure 5: Pressure Coefficient - a) AOA = 5◦, b) AOA = 12◦.

of attack considered exhibit the constant Cp typical of a separated
boundary layer. AOA = 12◦ displays a constant Cp region which
extends from the separation point to the trailing edge suggesting no
boundary layer reattachment. On the other hand, AOA = 5◦ has a
constant pressure region followed by a sudden pressure recovery.
This suggests the presence of a laminar separation bubble. As well,
the separation point moves forward with increasing angle of attack.
As can be seen from the pressure coefficient plots, there is good
agreement between the experiment and computations. The laminar
separation bubble is slightly overpredicted. One possible source of
this variance is receptivity, which often cannot be accounted for in
experiments and can greatly affect the behaviour of low-Reynolds
number airfoils (Dovgal and Kozlov (1983)).

The shear layer separation and laminar separation bubble can
better be visualized by the mean velocity streamlines (figure 6). At
the higher angle of attack in figure 6b, a low velocity recirculating
region is observed over a good portion of the airfoil upper surface.
This low velocity region extends well beyond the trailing edge, once
again suggesting no reattachment. This is not the case, however,
for AOA = 5◦ (figure 6a) as only a small low-velocity region, the
laminar separation bubble, is seen near the surface followed by a

recovery.

(a)

(b)

Figure 6: Mean LES velocity streamlines - a) AOA = 5◦, b)
AOA = 12◦.

Stability Analysis
Mean velocity profiles obtained from the numerical computa-

tions and hot-wire measurements were used in the stability com-
putations. A hyperbolic tangent fit (Dovgal (1994)) was applied to
the velocity data using a least-squares method (eqn. 14), as sug-
gested by Boutilier and Yarusevych (2013) who found that analyti-
cal expressions provide more reliable predictions for linear stability
analysis.

U(y′)
Ue

=
tanh[a1(y′−a2)]+ tanh(a1a2)

1+ tanh(a1a2)

+a3
y′

a2
exp

[
−1.5

(
y′

a2

)2
+0.5

] (14)

where a1, a2 and a3 are the fit parameters and Ue is the edge
velocity.

The wall-normal profiles of the mean velocity, U , just down-
stream of separation are shown in figure 7. The hyperbolic tan-
gent curve fit provides a good analytical approximation to the dis-
crete data. The maximum normalized least squares residual for the
boundary layers is R = 0.001.

Using the analytical boundary layer curve fits, unstable
frequency-growth rate profiles were generated using linear stability
analysis (figure 8). In addition, experimentally-measured growth
rates were determined from hot-wire measurements at y′ = δ ?. A
few trends are of note. The band of unstable frequencies is larger
for AOA = 5◦ than AOA = 12◦. This is predicted using both the
LSA from the LES and experimental profiles. On the other hand,
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Figure 7: Boundary Layer Profiles - a) AOA = 5◦, b) AOA =
12◦. ◦ : Experiment, : Analytical curvefit, : LES.

peak growth rates, both from LSA predictions and hot-wire mea-
surements, are higher for AOA = 12◦ compared to AOA = 5◦.

It is evident, however, that there is some variance between the
LSA predictions for LES and experimental velocity profiles. A
few studies have investigated the sensitivity of the Orr-Sommerfeld
operator (Reddy (1993); Bottaro (2003)). Using the method de-
scribed in Bottaro (2003) and more recently in Ziadé and Sullivan
(2017), the sensitivity of the linear stability predictions can be as-
sessed. In perturbing the base flow, U , with normally distributed
noise, the methodology can be considered as a special case of the
ε-pseudospectra method (Trefethen (2005)). This alternate method
is the ∆U-pseudospectrum, where only the base flow is perturbed.
The ∆U-pseudospectrum of a matrix A is defined as

σ∆U (A)= {z ∈ C : z ∈ σ [A(U +∆U)] for some ∆U with ‖∆U‖ ≤ r} .
(15)

In the study by Ziadé and Sullivan (2017), the boundary layer profile
over a low Reynolds number airfoil was subjected to different levels
of perturbation at different Reynolds numbers in the low Reynolds
number regime. In figure 9, the growth rate spectra for the perturbed
boundary layer at AOA = 5◦ and Rec = 105 is shown. Three levels
of velocity perturbations are considered: σU = 0.75%,1.25%, and
2.5%, where σU denotes the standard deviation of the imposed nor-
mal velocity scatter.
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Figure 8: Unstable stability profiles - a) AOA = 5◦, b) AOA =
12◦. ◦ : Experiment, : Experimental LSA, : LES
LSA.
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Figure 9: Growth rate spectra with imposed velocity pertur-
bations - AOA = 5◦.

It is found that even relatively small scatter in the data can
produce significant deviations in predicted growth rates and fre-
quencies. As stated earlier, several researchers have attributed this
amplified sensitivity, which can be much greater than the perturba-
tion, to the nonnormality of the Orr-Sommerfeld operator (Schmid
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et al.(1993), Reddy et al. (1993)). Placing this sensitivity study in
context, figure 10 shows the growth rate spectra for the perturbed
AOA = 5◦ experimental boundary layer profile plotted with the LES
LSA growth rate as well as the measured growth rate.

Figure 10: Perturbed growth rates as well as LES growth rate
( ) and experimental growth rate (◦) - AOA = 5◦.

It can be seen in figure 10 that the LSA growth rate obtained
from the LES velocity profile draws nearer to the nominal growth
rate from the experimental velocity profile (figure 8a) if typical
velocity scatter is considered. The acute sensitivity of the Orr-
Sommerfeld equation, therefore, makes comparison of growth rate
spectra using boundary layer profiles from different sources a very
difficult task. One should therefore keep this sensitivity in mind
when comparing linear stability predictions.

CONCLUSIONS
This study investigated the flow separation and transition over

a NACA 0025 airfoil at a Reynolds number of 105 at two angles
of attack: 5◦ and 12◦. Numerical computations using large-eddy
simulation were compared to hot-wire measurements obtained in a
low-turbulence wind tunnel.

Pressure measurements on the suction surface of the airfoil
agreed well and predicted a laminar separation bubble at AOA = 5◦

and no reattachment at AOA = 12◦. The laminar separation bubble
was slightly overpredicted in the computations. This variance can
likely be attributed to receptivity.

Boundary layer profiles showed very good agreement between
experiment and computations. Linear stability analysis was per-
formed on the base profiles using a Chebychev collocation method.
The resulting growth rate spectra predicted a wider band of unstable
frequencies for AOA = 5◦ but higher growth rates at AOA = 12◦.

Fairly pronounced differences were found in the linear stability
predictions. It was shown using a matrix perturbation method that
the Orr-Sommerfeld operator is very sensitive to base flow perturba-
tions. Accounting for these perturbations, which represent typical
experimental velocity scatter, can guide future stability comparisons
and provide an explanation for observed growth rate differences de-
spite similar base velocity profiles.
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