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ABSTRACT
Conducting large-eddy simulations (LES) implies the use of

LES filters, which are commensurate with the local grid spacing.
For wall modeled LES (WMLES) where the grid spacing in the
wall-normal direction scales with the local boundary layer height,
the near-wall turbulence is typically not well resolved. Because
of the poorly-resolved near-wall region, the no-slip condition no
longer applies; and a near-wall closure (an LES wall model) must be
used. Recently S. T. Bose & P. Moin (Physics of Fluids, 26, 015104,
2014, DOI: http://dx.doi.org/10.1063/1.4849535) proposed to use a
Robin-type near-wall closure ui− lp∂ui/∂y = 0, where ui’s are the
slip velocities at the wall, lp is a slip length and the subscript i = 1,
2, 3 indicate the streamwise, wall-normal and spanwise directions
respectively. Different from most physics-based LES wall models,
this slip wall model is based on the use of a differential LES filter. In
the present work, we provide a physics-based interpretation for this
Robin-type wall closure. We show that the model is compatible with
arbitrary LES filter and it can be motivated by the same considera-
tions that lead to the equilibrium wall model. The possibility of ex-
plicitly accounting for non-equilibrium effects is briefly discussed.
The model is tested in turbulent channel flow and its performance
is compared against other wall models. The flow quantities of inter-
est here include the mean velocity, the variance of the streamwise
velocity fluctuation and the instantaneous wall shear stress.

INTRODUCTION
The need for LES wall models comes from the strict near-wall-

resolution requirements of a wall-resolved LES (Chapman, 1979;
Choi & Moin, 2012), the limited computational power and the need
for high-fidelity numerical solutions in real-world engineering prac-
tices. Conducting large-eddy simulations (LES) implies the use of
LES filters. The sizes of the LES filters are commensurate with
the local LES grid spacing. For wall-modeled LES (WMLES),
where the grid spacing in the wall-normal direction scales with the
boundary layer height, the near-wall turbulence is poorly resolved.
Because of this, the no-slip condition does not apply at the wall;
and the wall boundary condition must be supplied by an LES wall
model.

In general, there are at least three types of LES wall models (1)
Dirichlet-type wall model, (2) Neumann-type near-wall closure and
(3) Robin-type slip wall model (see Piomelli & Balaras (2002) for a
review of commonly used LES wall models). A Dirichlet-type wall
model provides a slip velocity uw at the (virtual) wall (Bazilevs &
Hughes, 2007; Chung & Pullin, 2009). Given a slip velocity and
a non-vanishing eddy viscosity at the (virtual) wall, the wall shear
stress can be computed in the same manner as it is in the bulk region.
Neumann-type models provide the wall shear stress directly but the
velocity at the wall is not explicitly modeled. This type of near-wall
closure is probably the most intuitive and the most commonly used.
It includes the algebraic wall models that are based on the law of
wall (Schumann, 1975; Porté-Agel et al., 2000), the algebraic in-

tegral wall model that solves the vertically integrated momentum
equation (Yang et al., 2015), the zonal wall models that integrate
the Reynolds Averaged Navier Stokes (RANS) momentum and en-
ergy equation on a refined one-dimensional mesh between the wall
and a wall-model/LES matching location (Balaras & Benocci, 1994;
Park & Moin, 2014) and a number of models that rely on optimal
control strategies and data mining techniques (Nicoud et al., 2001;
Templeton et al., 2006). The use of Robin-type near-wall closures
is not until quite recent and the first attempt is by Bose & Moin
(2014), where they proposed to use the following wall condition in
WMLES

[
ui− lp

∂ui

∂y

]
y=0

= 0, (1)

where y = 0 is at the wall. In Bose & Moin (2014) the slip length
lp is computed dynamically according to a Germano-like identity.
As has been rigorously proved in Bose & Moin (2014), the slip wall
formalism conforms with the use of the differential filter in LES
(see Bose & Moin (2014) for detailed discussion). It is not clear,
however, how the slip wall model captures the flow physics.

In this work, we provide a physics-based interpretation for this
slip wall closure. We show first that the Robin-type wall closure is
compatible with arbitrary LES filter, and second that the slip wall
model can also be motivated using RANS-type equilibrium argu-
ments. We would discuss briefly the possibility of explicitly ac-
counting for the effects of flow acceleration and local pressure gra-
dient in the slip wall model. The performance of the slip wall model
is then compared against that of the integral wall model (see Yang
et al. (2015) for details of the model) and the algebraic equilibrium
wall model,

τw,x =

[
κu||

log(hwm/yo)

]2 uLES

u||
, τw,z =

[
κw||

log(hwm/yo)

]2 wLES

u||
, (2)

in turbulent channel flow, where κ = 0.4 is the Karman constant, τw
is the wall shear stress, uLES, vLES are the LES velocity at y = hwm,

u|| =
√

u2
LES +w2

LES is the wall-parallel velocity, hwm is the wall-
model/LES matching height and yo is the viscous/roughness length
scale. The wall model solution matches with the spatially filtered
LES solution at y = hwm (Bou-Zeid et al., 2004). Throughout the
article, we use x, y, z for the streamwise, wall-normal, and spanwise
directions and u, v, w for the streamwise, wall-normal and spanwise
velocities. The flow quantities of interest include the mean velocity
and the variance of the streamwise velocity fluctuation. In addition,
the probability density functions (p.d.f.) of the wall shear stress
in WMLES and in filtered direct numerical simulations (DNS) are
compared.
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A PHYSICS-BASED INTERPRETATION FOR THE
SLIP MODEL

In this section, we provide a physics-based interpretation for
the slip wall closure. We begin with the law of wall

〈u〉
uτ

=
1
κ

ln
(

y
yo

)
, (3)

where uτ is the friction velocity and 〈·〉 indicates ensemble average.
Imposing this log scaling instantaneously and locally, and match-
ing it with the LES velocity at the first (or the second, third, etc.
depending on the implementation (Kawai & Larsson, 2012)) grid
point away from the wall leads to

uτ =
κuLES

ln(hwm/yo)
. (4)

Imposing again the law of wall and modeling the Reynolds stress
using an eddy viscosity

ũv− ũṽ = νT
∂uLES

∂y
= u2

τ , (5)

where νT is the eddy viscosity and the viscous stress is neglected.
Substituting Eq. (4) into Eq. (5),

uLES−
[

ln(hwm/yo)νT

κuτ

]
∂uLES

∂y
= 0. (6)

Equation (6) conforms with a Robin boundary condition and the slip
length is

lp =
ln(hwm/yo)νT

κuτ

. (7)

For a typical WMLES, where the y = hwm is in the log region, the
eddy viscosity can be modeled via the mixing length model

νT = κhwmuτ , (8)

and according to Eq. (7)

lp = hwm ln
(

hwm

yo

)
. (9)

Equations (6), (7) justify the use of a Robin-type condition in WM-
LES.

THE SLIP WALL MODEL
The physics-based interpretation in the previous section can be

tested in WMLES. To do that we impose

u− lp
∂u
∂y

= 0, w− lp
∂w
∂y

= 0, v = 0 (10)

at the wall with lp specified according to Eq. (9). This Robin-
type near-wall closure does not admit penetration at the wall. As a

result, the momentum loss at the wall is entirely due to νT ∂u/∂y.
This treatment is different from Bose & Moin (2014), in which a
penetration condition is used and part of the momentum loss at the
wall is due to a non-zero Reynolds stress 〈u′v′〉. As this work is
to provide a physical basis for the Robin-type boundary condition
in general, we do not necessarily need to conform with the exact
formulation of Bose & Moin (2014).

The discussion so far has been based on equilibrium consid-
erations. Non-equilibrium effects including flow acceleration and
local pressure gradient can be explicitly accounted for by includ-
ing a non-equilibrium correction to the otherwise equilibrium wall
shear stress according to

τ
NE
w,x = τ

E
w,x + τ

c
w,x, (11)

where the superscript “E” indicates “equilibrium”, “NE” indicates
“non-equilibrium”, “c” indicates “correction” and the subscript x
indicates quantities in the flow direction. The wall stress in the
spanwise direction can be corrected in the same manner. Follow-
ing Yang et al. (2015), τc

w,x is

τ
c
w,x = r

[∫ hwm

y=0
−∂ p

∂x
− du

dt
dy
]
, (12)

where d · /dt is the material derivative, p is the dynamic pressure,
the pre-factor r is to resolve the time scale mismatch between the
resolved eddies (of scale hwm) and the filtered wall shear stress. Fol-
lowing Yang et al. (2015),

r =
Tc

Tw
, (13)

where Tc = ∆y/uLES is the convective time scale, Tw = ∆y/(κuτ )
is the time scale for a disturbance at y = ∆y to reach y = 0. The
filtered flow field is fully resolved by the LES grid (see Bose &
Moin, 2014). Hence,

u≈ uw +
uLES−uw

hwm
y, p≈ pw +

pLES− pw

hwm
y, 0 < y < hwm. (14)

The integration in Eq. 12 then becomes trivial. It is worth noting
that such a simplification cannot be exploited in the integral model.
This is because in Yang et al. (2015), the LES filter acts only in
the x and z directions and the near wall sub-grid velocity comprises
a linear inner layer and a log meso-layer along with an additional
linear term. In this work, Eq. (12) is used along with the Robin-type
closure, however, such a correction is in principle applicable to any
LES wall model that is based on the law of wall. This falls out of
the scope of this paper and is left for future investigation.

LES SETUP
We use the open-source incompressible flow solver LESGO

(publically available on github). Details of this pseudo-spectral
code can be found in Bou-Zeid et al. (2005) and Anderson & Men-
eveau (2011). We solve for flow in an open half-channel. A con-
stant pressure gradient is imposed in the streamwise direction. The
friction velocity uτ is known from uτ =

√
−1/ρ∂ 〈p〉/∂x, where

ρ = Const is the fluid density and p is the dynamic pressure. A
symmetric boundary condition is used on the top boundary. Span-
wise and streamwise periodicities are imposed. The computational
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domain is of size 2πδ × δ × 2πδ in the x, y, z directions, respec-
tively, where δ = 1 is the half-channel height. Four LES wall mod-
els are examined: the algebraic equilibrium wall model (Eq. 2),
the integral wall model (Yang et al., 2015), the equilibrium slip
wall model (Eq. (10)) and the non-equilibrium slip wall model
(Eq. (11)). Both the algebraic equilibrium model and the integral
wall model are readily available in the code. To investigate the ef-
fects of grid resolution, two mesh sizes, 643 and 1283, are consid-
ered. Uniform grid spacing is used in all directions. Three dynamic
sub-grid scale (SGS) models including the dynamic Smagorinsky
model (Germano et al., 1991), the dynamic Lagrangian Smagorin-
sky model (Meneveau et al., 1996) and the scale-dependent dy-
namic Lagrangian Smagorinsky model (Bou-Zeid et al., 2005), are
considered. All the SGS models are already implemented in the
code. The half channel is at a friction Reynolds number Reτ = 4200,
where Reτ = δuτ/ν and ν is the kinematic viscosity. A full-
channel DNS at this Reynolds number is reported in Lozano-Durán
& Jiménez (2014). The viscous length scale to be used in the alge-
braic equilibrium wall model is yo = ν/uτ exp(−κB), where B = 5
according to the law of wall.

EFFECTS OF WALL MODELS
Figure 1 (a) shows the mean velocity profiles as functions of

the wall-normal distance. All the WMLES in figure 1 have used a
grid of size 1283 and the sub-grid scale (SGS) stresses are all mod-
eled using the scale-dependent dynamic Lagrangian Smagorinsky
model. A slightly positive log-layer mismatch is found for the two
slip wall models. Overall, the law of wall is captured irrespect of
the wall model used.

Figure 1 (b) shows the variance of the streamwise velocity fluc-
tuation as functions of the wall-normal distance. The DNS results
are included for comparison. LES solves the filtered Navier-Stokes
(NS) equation. For a fair comparison, we also filter the DNS us-
ing a top hat filter of size ∆x+×∆y+×∆z+ ≈ 200× 32.8× 200,
which commensurate with the resolution of the WMLES. At high
Reynolds numbers, the streamwise variance follows a logarithmic
scaling in the log region (Hultmark et al., 2012). However, at this
Reynolds number (Reτ = 4200), one can barely find a log region
in
〈

u′2
〉

. In the near-wall region, WMLES are more comparable
to the DNS than the filtered DNS. In the bulk region, the filtered
DNS, the DNS and the WMLES are not very different. The two
Robin-type wall models lead to

〈
u′2
〉

profiles that are closer the fil-
tered DNS results, while the integral wall model and the equilibrium
wall model result in profiles that agree better with the DNS results.
At this Reynolds number, for the particular grid and SGS model, it
seems that neither the mean velocity nor the streamwise variance
depends critically on wall models.

EFFECTS OF SGS MODELS
The mean velocities follow the log law closely when different

SGS models are used (not shown for brevity). Figure 2 shows the
streamwise variance as functions of the wall normal distance. All
WMLES in figure 2 have used a grid of size 1283. For brevity,
only the integral wall model results and the equilibrium slip wall
model results are shown. When the equilibrium slip wall model
is used, SGS models do not seem to make a big difference in the
bulk region and the WMLES results agree reasonably well with the
filtered DNS. On the other hand, when the integral model is used,
Lagrangian models lead results that agree with the DNS and the
non-Lagrangian model leads to a profile that follows the filtered
DNS results. In the near wall region, different SGS models lead to
distinctly different turbulence intensities.

Figure 1. (a) Mean velocity profiles as functions the wall-normal
distance. The log-law corresponds to U/uτ = 1/κ log(yuτ/ν)+B,
with κ = 0.4, B = 5. “Equil” is for the algebraic equilibrium wall
model, “Integral” is for the integral wall model, “E-Slip-Wall” is
for the equilibrium slip wall model, “NE-Slip-Wall” is for the non-
equilibrium slip wall model and “f-DNS” is for the filtered DNS.
(b) Same as (a) but for the streamwise variance.

EFFECTS OF GRID RESOLUTION

The law of wall is captured at both grids, 643 and 1283. Results
of the mean flow are therefore not shown for brevity. Figure 3 (a–
c) show the variance of the streamwise fluctuation as functions of
the wall-normal distance for the algebraic equilibrium wall model,
the integral wall model and the equilibrium slip wall model, respec-
tively. All WMLES cases in figure 3 have used the scale-dependent
Lagrangian Smagorinsky model for SGS stress modeling. When a
large grid is used (in this case, a grid size of 1283), the results are
fairly insensitive to the choice of wall model. However, wall models
start to make a difference when a coarse grid is employed (in this
case, 643).

The expected convergence of the LES streamwise variance to
DNS is from y = δ to the wall. This is because first that for

〈
u′2
〉

at
a wall-normal height y, only eddies whose heights are greater than
O(y) are statistically significant (see Townsend (1976); Woodcock
& Marusic (2015); Yang et al. (2016a,b) for detailed discussion)
and second that as the grid gets refined, large-scale flow structures
get resolved first and then the small-scale structures. This expected
trend is observed when the integral wall model or the equilibrium
slip wall model is used. However, for the algebraic equilibrium
wall model, when a coarse grid is used, the streamwise variance
deviates from the DNS profile even in the bulk region, suggesting
a poorly resolved bulk region. These observations suggest that the
integral wall model and the equilibrium slip wall model lead to more
realistic flow structures than the algebraic equilibrium wall model
when a coarse grid is employed.
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Figure 2. (a) The streamwise variance as functions of the wall
normal distance from WMLES that use the integral wall model
for near-wall modeling. The dynamic Smagorinsky model (Smag),
the dynamic Lagrangian Smagorinsky model (DLag) and the scale-
dependent dynamic Lagrangian Smagorinsky model (Sc-DLag) are
used for SGS stress modeling. “f-DNS” is for the filtered DNS. (b)
Same as (a) but for the equilibrium slip wall model.

THE INSTANTANEOUS WALL SHEAR STRESS
Figure 4 shows the instantaneous wall shear stress contours

from the filtered DNS and the WMLES with various wall models.
All WMLES in this section use a grid of size 1283 and SGS stresses
are modeled using the scale-dependent Lagrangian Smagorinsky
model. Although streaky structures can be seen independent of
the wall closure used, the spatial distribution of the fluctuating wall
stress depends very much on the choice of LES wall model. Visu-
ally, compared to the other two wall models considered here, the
integral wall model leads to wall shear stress that resembles the fil-
tered DNS stress the most.

Both the algebraic equilibrium wall model as well as the equi-
librium slip wall model relate the wall shear stress to the local LES
velocity. For equilibrium wall model τw,x ∼ u2

τ ∼ u2
LES and for the

slip wall model τw,x ∼ νT ∂u/∂y ∼ νT uLES ∼ uLES, where uLES is
the LES velocity at y = hwm. Wall shear stresses computed accord-
ing to the integral wall model and the non-equilibrium slip wall
model, on the other hand, do not depend only on uLES, but also on
the LES solutions in the neighboring computational cells. Figure
5 are scatter plots of the instantaneous wall shear stress as func-
tions of the square of the velocity at y = hwm. Overall, the instanta-
neous wall shear stress is positively correlated with the velocity at
y = hwm. A good amount of scattering is found in the filtered DNS
data and the scattering becomes more significant at large u(y= hwm)
values. The scattering in WMLES cases are quite moderate with
most

(
[u(y = hwm)/(〈u(y = hwm)〉)]2 ,τw/u2

τ

)
pairs center around

(1,1). The least square fit of the data in figure 5 (b, c) reduces to
the their equilibrium counterparts, τw ∼ u2

LES and τw ∼ uLES, re-
spectively.

Figure 3. Variance of the streamwise velocity fluctuations as func-
tions of the wall-normal distance at two grids 643 and 1283 for WM-
LES that use (a) the algebraic equilibrium wall model, (b) the inte-
gral wall model, (c) the equilibrium slip wall model. DNS data are
shown for comparison.

Figure 6 shows the p.d.f. of the wall stress. Although the alge-
braic equilibrium wall model and the equilibrium slip wall model
are both based on equilibrium considerations, the resulting wall
shear stress p.d.f.’s are noticeably different. Because fluctuations in
the wall shear stress are correlated with local flow acceleration and
local pressure gradient, even for the equilibrium channel flow con-
sidered here, accounting for non-equilibrium effects helps in cap-
turing the p.d.f. of the wall shear stress. The wall shear stress p.d.f.
resulted from the integral wall model is in close agreement with that
of the filtered DNS. This result is quite encouraging, yet, it is not en-
tirely unexpected considering the success of the integral wall model
in the a priori test reported in Graham et al. (2016). Compared with
the wall shear stress of the filtered DNS, the p.d.f. resulted from the
equilibrium wall model is slightly less peaked and the p.d.f. resulted
from the equilibrium slip wall model is slightly more peaked. This
is not unexpected because the p.d.f. of u2

LES (according to the equi-
librium wall model τw ∼ u2

LES) is certainly less peaked than that
of uLES (according to the equilibrium slip wall model τw ∼ uLES).
Last, by including the non-equilibrium effects, the wall stress p.d.f.
becomes less peaked. The wall stress p.d.f. from the DNS is in-
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Figure 4. Contour plots of the normalized instantaneous stream-
wise wall shear stress, τw,x/u2

τ from (a) the filtered DNS (b) WM-
LES with the equilibrium wall model (c) WMLES with the inte-
gral wall model and (d) WMLES with the non-equilibrium slip-wall
model.

Figure 5. Scatter plots of the instantaneous wall shear stress as
functions of the square of the velocity at y = hwm. (a) the filtered
DNS. (b) WMLES with the integral wall model, (c) WMLES with
the non-equilibrium slip wall model.

cluded in figure 6 for comparison; although it is not expected that
with a typical LES grid, this p.d.f. can be captured.

Conclusions
A physics-based interpretation is provided for the slip-wall clo-

sures by Bose & Moin (2014). The slip wall model, which was

Figure 6. The streamwise wall stress p.d.f. from WMLES, DNS
and filtered DNS. f-DNS is filtered DNS. The other legends are the
same as those in figure 1.

previously associated with the use of the differential filter in LES,
is found to be compatible with arbitrary LES filter. Numerical ex-
periments in this work suggest that the physics-based interpretation
here is reasonable and the Robin-type wall closure, with a properly
picked length scale lp, can be used as an alternative to the conven-
tional wall models that supply the wall shear stress directly. The
model performance is examined in turbulent channel flow and com-
pared against the algebraic equilibrium wall model and the alge-
braic integral wall model. The flow quantities of interest include
the mean velocity, the streamwise variance and the instantaneous
wall shear stress. When a sufficiently large grid is used, both the
mean velocity and the variance of the streamwise velocity fluctu-
ation do not depend critically on the LES wall model, at least for
the wall models tested in this work. However, when a coarse-grid
is used, the integral wall model and the slip wall model appear to
give a more realistic prediction of the streamwise variance than the
algebraic equilibrium wall model. The p.d.f. of the wall shear stress
depends sensitively on the wall model. The tests here show that for
channel flow at the particular Reynolds number Reτ = 4200, the in-
tegral wall model captures quite well the p.d.f. of the filtered wall
stress. Whether this holds for a different flow configuration, at a
different Reynolds number and at a different grid resolution is not
entirely clear and further investigations will be needed. As for the
slip wall models, explicitly accounting for non-equilibrium effects
is useful even for equilibrium flows like channel flow because the
extreme wall shear stresses are likely to be correlated with local
flow acceleration and local pressure gradient.

To conclude the discussion, we briefly discuss how the effects
of sub-grid roughness can be accounted for in a Robin-type LES
wall closure. In the pioneering work by Bose & Moin (2014), it is
pre-assumed that the wall is smooth. As the effects of roughness
are commonly parameterized using a darg force −CdU2 in the mo-
mentum equation, accounting for sub-grid roughness is highly non-
trivial without referring to the NS equation. In this work, because
we have related the Robin-type wall condition to the NS equation,
the effects of roughness can be accounted for by adding a drag force
term to Eq. (5) or simply by using an effective roughness length yo
in Eq. (6).
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