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ABSTRACT
In this work, we examine the influence of viscosity on breakup

and coalescence of a swarm of large drops in a wall-bounded tur-
bulent flow. We consider several values of surface tension and a
wide range of drops to fluid viscosity ratios λ = ηd/ηc (with ηd
the viscosity of drops and ηc the viscosity of the carrier fluid),
from λ = 0.01 to λ = 100, while we maintain the same density
for drops and carrier fluids. Drops can coalesce and break follow-
ing a complex dynamics that is primarily controlled by the interplay
between turbulence fluctuations (measured by Reτ ), surface tension
(measured by We) and λ . We use Direct Numerical Simulations
(DNS) of turbulence coupled with a Phase Field Method (PFM) to
describe the drops dynamics. We consider three different values
of We (which is the inverse of the surface tension): We = 0.75,
We = 1.5 and We = 3. For each value of We, we assume five values
of λ : λ = 0.01, λ = 0.10, λ = 1.00, λ = 10.0 and λ = 100. We ob-
serve a consistent action of increasing λ , which, especially for the
larger Weber numbers decreases significantly the breakup rate of
the drops. Qualitatively, an increase of drop viscosity decreases the
breakup rate, very much like an increase of surface tension does.
The mechanism by which drop viscosity acts is a modulation of
turbulence fluctuations inside the drop, which reduces the work sur-
face tension has to do to preserve drop integrity. We believe that
this may give important indications in many industrial applications
to control drop coalescence and fragmentation via the ratio of drop-
to-fluid viscosity.

INTRODUCTION
Prediction of breakup and coalescence rates of a swarm of liq-

uid drops immersed in a turbulent liquid flow (liquid/liquid emul-
sion) is crucially dependent on a number of hard-to-tackle factors.
Among many others these include turbulence, turbulence/interface
interactions, surface tension effects and viscosity gradients. Each
single of these effects has a specific action on breakup and coales-
cence, and we can envision drops dynamics as the ultimate result
of a complex competition between destabilizing and stabilizing ef-
fects. Destabilizing effects are primarily due to the combined ef-
fects of fluctuating inertial and shear terms acting at the drops in-
terface. Stabilizing effects are due to surface tension, which is a
restoring force acting to preserve drops sphericity. The outcome of
this competition determines drops deformation, breakage and co-
alescence. In this picture, viscosity gradients across the interface

of the drops can act as modulators of the localized shear stresses
and can amplify or damp the initial turbulence perturbations to the
point of changing profoundly the final result. Drops coalescence
and breakup is of paramount importance in many environmental
and industrial applications, from transport of pollutant drops in wa-
ter bodies (Wu et al. (2010)) to hydrocarbon separation or oil-water
emulsions in chemical plants and petroleum industry ( Joseph et al.
(1984); Chen et al. (1990); Ahmadi et al. (in press)). In this pa-
per we focus precisely on liquid-liquid emulsions, in which drops
of one phase are dispersed within the other phase. In this instance,
the knowledge of the drops number density and/or the drops in-
terface extension is a key parameter to optimize the design of effi-
cient oil separators, in which drops coalescence should be promoted
and drops fragmentation reduced. For drops breakup in turbulence,
literature dates back to the seminal work of (Hinze (1955)), who
modelled the mechanism of liquid drops splitting in a turbulent
gas environment. Since the fundamental physics of drops split-
ting in gas-liquid or liquid-liquid configurations is controlled by
the same parameters, results obtained for the gas-liquid case have
been historically (and successfully) applied to the liquid-liquid case
as well. In accordance with (Hinze (1955)), drop breakup occurs
when the Weber number We, (i.e. the ratio between inertia and sur-
face tension) exceeds a critical value, Wecr. Assuming a drop size
in the inertial range of turbulence (so that Kolmogorov’s law can
be used to define turbulence fluctuations at the drop scale), (Hinze
(1955)) was able to predict the maximum size of a drop that will
not be broken by turbulence in a given flow. Based on available
experimental data (Clay (1940a,b); Hinze (1955)) finally proposed
Wecr = 1.18, even though a general agreement on the value of Wecr
is still to be found (the value of Wecr ranges between 1 and 12,
largely depending on the employed fluids and on the flow configu-
ration). Many subsequent theoretical and experimental studies (see
Chen & Middleman (1967); Wang & Calabrese (1986a,b); Sleicher
(1962); Collins & Knudsen (1970), among others) have been per-
formed on drops size distribution in engineering-relevant situations
(liquid-liquid emulsions in pipelines and stirred tanks), with most
of these studies conducted in dilute conditions, so to neglect drops
coalescence. However, in any practical situation, drops breakup and
coalescence occur simultaneously and cannot be neglected when a
complete characterization of the drop swarm dynamics is required
(Shinnar (1961)). Unlike the case of drops breakup, drops coales-
cence has been the subject of relatively fewer studies, most of which
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focused on the binary collision of two separate drops in still fluid
(Qian & Law (1997); Ashgriz & Poo (1990); Paulsen et al. (2014)).
Although these studies have definitely provided useful insights to
understand the fundamental physics of drops collisions and merg-
ing, their extension to more complex situations like drops moving
inside turbulent pipes or reactors is not straightforward and still re-
quires a leap forward (Howarth (1964)). From the previous liter-
ature survey it is apparent that a large proportion of the work on
drops breakup and coalescence is based on experimental or the-
oretical approaches. This is due to the complex nature of drops
interactions that has hindered the development of accurate numer-
ical simulations of the phenomenon. Only recently, numerics has
become available to analyze complex multiphase flows situations.
Accurate numerical simulations can help providing the time evolu-
tion of the drops deformation together with the description of the
entire flow field inside and outside of the drop. This is extremely
important for unsteady turbulent flow conditions, where it is essen-
tial to record the coupled drops/turbulence interactions in time and
space. To the best of our knowledge, there are only few available
Direct Numerical Simulations (Qian et al. (2006); Perlekar et al.
(2012); Scarbolo et al. (2015); Komrakova et al. (2015); Skartlien
et al. (2013)) of the collective drop dynamics in turbulence, none
of which, however, consideres the case of fluids with different vis-
cosities in wall-bounded turbulence. The aim of the present study
is to extend available literature results on collective drops dynamics
in wall-bounded turbulence considering the case of fluids with the
same density but different viscosity. In particular, we will consider
a wide range of drops-to-fluid viscosity ratio λ = ηd/ηc (with ηd
the viscosity of drops and ηc the viscosity of the carrier fluid), from
λ = 0.01 to λ = 100. This paper is organized as follows. We will
first describe the physical and numerical modelling used to perform
the present simulations. Then, we will present and discuss our nu-
merical results, focusing in particular on the role of drops surface
tension and drops viscosity on their coalescence and breakup effi-
ciency.

METHODOLOGY
We consider a two-phase flow system composed by large drops

with density ρd and dynamic viscosity ηd dispersed in a turbulent
channel flow (with the carrier fluid being characterized by density
ρc and dynamic viscosity ηc). The origin of the reference frame
is located at the center of the channel and the x−, y− and z−axes
point in the streamwise, spanwise and wall normal direction, re-
spectively. The evolution of the two-phase flow system is described
by a Phase Field Method (PFM), which in the recent years has been
applied to this type of problems (Scarbolo et al. (2013, 2015)). The
method is based on the use of a single variable φ (order parame-
ter) to describe the entire binary system: φ is uniform in the bulk
fluid regions (φ = φ+ inside a drop and φ = φ− inside the carrier
flow) and changes smoothly across the fluid-fluid interface. All the
thermophysical properties of the fluids are proportional to the order
parameter. The time evolution of the order parameter φ is described
by the convective Cahn-Hilliard equation Anderson et al. (1998):

∂φ

∂ t
=−u ·∇φ +M ∇

2
µ (1)

where u is the velocity field, M is the mobility parameter driv-
ing the interface relaxation and µ is the chemical potential control-
ling the behaviour of the interfacial layer and defined in terms of a
Ginzburg-Landau free energy functional:

F [φ ,∇φ ] =
∫

Ω

( f0(φ)+
1
2

κ|∇φ |2)dΩ (2)

The above expression of F [φ ,∇φ ], which is the sum of two dif-
ferent contributions, is used here to represent an immiscible binary
mixture of isothermal fluids. In particular, f0(φ) is the so-called
double-well potential,

f0(φ) =
α

4

(
φ−+

√
β

α

)2(
φ+−

√
β

α

)2

(3)

which accounts for the tendency of the system to separate into the
two pure stable phases. The second term, 1

2 κ|∇φ |2 in Eq. (2), is a
non-local term (mixing energy) accounting for the energy stored in
the interfacial layer. Note that α and β are two positive constants
that define the interface properties, whereas κ is a positive parame-
ter used to describe the magnitude of the surface tension. The time
evolution of the order parameter φ is driven by the minimization of
F [φ ,∇φ ] (i.e by the chemical potential µ)

µ =
δF [φ ,∇φ ]

δφ
= αφ

3−βφ −κ∇
2
φ (4)

The Cahn-Hiliard equation (7) can be coupled with Navier-
Stokes (6) and continuity equations to form a model for the com-
putation of a multiphase flow (Jacqmin (1999); Yue et al. (2004);
Badalassi et al. (2003)). Using the half channel height h as reference
length, the shear velocity uτ =

√
τw/ρc (with τw the shear stress

at the wall) as reference velocity, and the bulk value φ+ =
√

β/α

as reference value of the order parameter, all the equations can be
made dimensionless (with the superscript ’+’ indicating dimension-
less variables being dropped for ease of reading) and the resulting
set of equations is:

∇ ·u = 0 (5)

∂u
∂ t

+u ·∇u =−∇p+
1

Reτ

∇ · (η(∇u+∇uT))+
3√
8

Ch
We

∇ ·τc (6)

∂φ

∂ t
+u ·∇φ =

1
Pe

∇
2
µ (7)

where the term 3√
8

Ch
We ∇ ·τc represents the capillary force due to sur-

face tension (τc = |∇φ |2I−∇φ⊗∇φ being the Korteweg stress), the
gradient pressure can be decomposed as ∇p = ∇p′+Π, where the
last term is the mean pressure gradient that drives the flow in the
streamwise direction (kept constant during all the computation) and
the function η(φ ,λ ) accounts for the viscosity variations between
the two phases. Note that the Ginzburg-Landau free energy poten-
tial F [φ ,∇φ ] and the chemical potential µ in dimensionless form
become:

F [φ ,∇φ ] =
1
4
(φ −1)2(φ +1)2 +

1
2

Ch2|∇φ |2 (8)

µ = φ
3−φ −Ch2

∇
2
φ (9)
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The dimensionless groups in Eqs. (7)-(6) are defined as:

Reτ =
ρuτ h

ηc
Pe =

uτ h
M

We =
ρu2

τ h
σ

Ch =
ξ

h
λ =

ηd

ηc
(10)

From a physical point of view, Reτ (shear Reynolds number) is
the ratio between inertial and viscous forces whereas We is the ratio
between inertial and surface tension forces. Note that increasing We
increases the drops deformation (for We→ 0 drops behave like rigid
spheres). The Peclet number Pe is the ratio between diffusive and
convective time scales of the interface, while the Cahn number Ch is
the dimensionless thickness of the interface. The Cahn-Hilliard (6)
and Navier-Stokes (7) equations are coupled through the capillary
term, 3√

8
Ch
We ∇ · τc, which models surface tension effects (momen-

tum exchange occurring across the fluid-fluid interface) as volume
forces acting on the very small volume region used to describe the
interface (a thin transition region between the two bulk fluids).

The function η(φ ,λ ) in Eq.(6) is used to account for the non-
uniform viscosity. In particular, assuming that the viscosity depends
linearly on the order parameter φ (Kim (2012); Zheng et al. (2015))
we have:

η(φ ,λ ) =
(λ −1)(φ +1)

2
(11)

The governing equations are solved by a Fourier-Chebyshev
pseudo-spectral method assuming no slip conditions at the channel
walls. For the phase field φ , a zero-flux of the chemical potential
and a fixed contact angle of π/2 rad are employed. These condi-
tions lead to:

u(z =±h) = 0
∂φ

∂ z
(z =±h) = 0

∂ 3φ

∂ z3 (z =±h) = 0 (12)

Periodicity is applied for both u and φ in streamwise and spanwise
directions (x and y). Note that the boundary conditions applied to φ

direct imply the total conservation of the phase field over time, i.e
d
dt
∫

φdV = 0.
The computational domain has dimensions Lx × Ly × Lz =

4πh× 2πh× 2h and is discretized using Nx × Ny × Nz = 512×
256× 257 collocation points. As initial condition, we injected
N0 = 256 drops inside a fully developed turbulent channel flow at
Reτ = 150. Drops are initially released on two different planes
(128 drops for each plane) such that the center of mass of each
drop is at 75 wall units from the wall. In wall units, the initial
diameter of a drop is D+ = 90, which gives a volume fraction of
ϕ = Vd

Vd+Vc
= 0.183, where Vc and Vd are respectively the volume

of the continuous and of the dispersed phase (drops). To resolve
the complex drops/turbulence interaction, the drops interface must
be carefully described. In the present work, we use a minimum of
three points to describe the interface (note that in the wall-normal
direction, where the grid is finer, we use 5 to 7 grid points). Con-
sidering the constraint of having at least three points to describe
the interface, we set Ch = 0.0185 and Pe = 162.2 (Magaletti et al.
(2013); Yue et al. (2010)).

Simulations are run at a given Reynolds number (Reτ = 150)
and assuming three different values of We: We = 0.75, We = 1.5
and We = 3.0. For each value of We, we consider five different val-
ues of the viscosity ratio λ : λ = 0.01,λ = 0.1,λ = 1,λ = 10,λ =
100. This gives a total of 15 simulations to cover the entire param-
eter range. Note that the value of Reτ employed here is rather low,

with the adopted grid making the simulations several time overre-
solved. However, due to the complexity represented by the multi-
phase flow description, the computational requirements are much
larger than for a single phase simulation. An overview of the main
simulations parameters is given in Tab. .

Sim Reτ We λ

S1 150 0.75 0.01

S2 150 0.75 0.10

S3 150 0.75 1.00

S4 150 0.75 10

S5 150 0.75 100

S6 150 1.50 0.01

S7 150 1.50 0.10

S8 150 1.50 1.00

S9 150 1.50 10

S10 150 1.50 100

S11 150 3.00 0.01

S12 150 3.00 0.10

S13 150 3.00 1.00

S14 150 3.00 10

S15 150 3.00 100

Table 1. Summary of the simulations perforemd

RESULTS
The dynamics of liquid drops immersed in a turbulent flow field

is the result of a complex interaction between destabilizing actions
due to shear and normal stresses at the drops interface and the sta-
bilizing ones due to surface tension (which tends to preserve drop
sphericity). Depending on the relative magnitude of destabilizing
and stabilizing actions, drops deform, break and coalesce. When a
viscosity difference between the liquid drops and the external fluid
(λ 6= 1) exists, the picture becomes more complex and the inter-
nal viscosity of the drops (ηd) plays an active role in controlling
the overall drops dynamics (Andersson & Andersson (2006); Co-
hen (1994)). In the following we will specifically focus on the role
of surface tension (We) and viscosity ratio (λ ) on the drops dynam-
ics in a turbulent wall-bounded flow.

Influence of viscosity on the number of drops
When a swarm of liquid drops is injected in a turbulent liq-

uid flow, simultaneous coalescence and breakup events are likely
to occur (Shinnar (1961); Scarbolo et al. (2015)) with their balance
ultimately determining the number of drops. To visualize the rela-
tive importance of these phenomena we therefore compute the time
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behaviour of the number of drops N(t) for the different cases con-
sidered. Results for N(t) are shown in Fig. 1 and are normalized by
the initial number of drops, N0. Fig. 1(a), Fig. 1(b) and Fig. 1(c) re-
fer to We = 0.75, We = 1.5 and We = 3 respectively. For each value
of We, the drops behaviour for all the viscosity ratios (λ = 0.01,
λ = 0.10, λ = 1.00, λ = 10.0 and λ = 100.) is considered. For
We = 0.75, and regardless of the value of λ , N(t)/N0 decreases
monotonically in time. In particular, there is an initial stage (up to
t+ ' 1000) in which N(t)/N0 decreases sharply in time, indicating
a strong predominance of coalescence over breakup events with the
consequent formation of few large drops. After this initial stage,
the number of drops N(t)/N0 achieves and almost constant value,
which indeed barely depends on the value of λ ; possibly we observe
that the final number of drops, represented by the final plateau, is
slightly larger for smaller λ . At this We, the large value of the sur-
face tension compared to inertia hinders drops fragmentation (small
deformability), even for small values of their internal viscosity. In
Fig. 1(b) we observe the behaviour for We = 1.5: as expected, coa-
lescence events dominate during the initial transient, and a statisti-
cally steady state is finally achieved in which the number of drops
fluctuates around an average value. The effect of viscosity becomes
larger in this case: for drops of small viscosity we observe a final
number of drops which is about an order of magnitude bigger com-
pared to the case in which the carrier fluid is less viscous than the
drops. In Fig. 1(c) we can appreciate the role of drop viscosity at
the highest We (We = 3). Drops coalescence dominates (i.e. the
number of drops N(t)/N0 decreases in time), until a critical drops
size is attained, after which the number of drops achieves a plateau
that does depend on λ . It is clear that when the drops viscosity is
smaller than that of the carrier fluid (λ < 1), breakage is favoured.
By contrast, when the drops viscosity is larger (λ > 1), coalescence
is favoured. Of course, viscosity is not surface tension, and even
if the effect of increasing drop viscosity (increasing λ ) act as an
increase of the surface tension (decrease of We), we must look for
the physical mechanism which is ultimately related to turbulence
modulation by viscosity. Lower values of the drops viscosity in-
duce larger deformations that eventually cause drops fragmentation
(i.e., small drops viscosity is a destabilizing factor). By contrast,
large values of drops viscosity represent an extra stability factor for
drops dynamics, which indeed induces smaller drops deformation
and favours the occurrence of coalescence events. Only for λ = 100
the dynamics appears somehow different, with the initial transient
decay extending up to t+ ' 800 and an asymptotic condition char-
acterized by a definitely smaller number of drops. However this
represents an extreme case for which the stabilizing effect due to
the large drops viscosity completely balances the small value of
the surface tension, resulting in drops having an overall small de-
formability. A qualitative representation of the physical mechanism
described above is given in Fig. 2-3 for the two limiting values of
We: Fig. 2 refers to the case We = 0.75, whereas Fig. 3 refers to
the case We = 3. For both We = 0.75 and We = 3, we show the
drops dispersion and deformation in time (at three different time in-
stants t+ = 300, t+ = 600 and t+ = 900) for the two extreme cases
λ = 0.01, Figs. 2-3(a)-(c), and λ = 100, Figs. 2-3(d)-(f). Together
with the drops deformation, we also show the contour map of the
Turbulent Kinetic Energy T KE, a quantity that may be related to
drops deformation and dynamics. Note that T KE = u′x

2 +u′y
2 +u′z

2

is shown on the channel center plane. In these figures, we observe
that the number of drops reduces in time (time increases from (a)
to (c)), regardless of the value of We and λ . For We = 0.75, the
drops shape is rather smooth and slightly dependent on λ . How-
ever, for We = 3 (Fig. 3) the situation is remarkably different. The
most striking feature observed in this case is the increased drop de-
formation and the formation of small drops fragments (particularly
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(b) We = 1.50
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λ

Figure 1. Time evolution of the normalized number of drops
N(t)/N0 for the three different values of We (We = 075, We = 1.5
and We = 3) considered in the present study. Panel (a) refers to
We = 0.75, panel (b) to We = 1.5 and panel (c) to We = 3. In
each panel, results for five different values of λ (λ = 0.01, λ = 0.1,
λ = 1, λ = 10 and λ = 100) are shown. A sketch with the definition
of λ and the color code is given beside each plot (right part of the
figure).

for λ = 0.01), as a result of recurring and intensive breakup phe-
nomena (Eastwood et al. (2004); Andersson & Andersson (2006)).
From the underlying contour maps of TKE (shown in grayscale),
we clearly identify the strong coupling between drops deformation
and turbulence. Drops, which are first deformed by turbulence fluc-
tuations, induce a turbulence modulation that is somehow linked to
drops viscosity, size and deformation (which in turn depends on We
and λ ). In general, the larger is λ , the larger is the drops effect on
the background turbulence.

CONCLUSIONS
Drops dynamics in turbulence is a complex phenomenon char-

acterized by the competition between the destabilizing action of tur-
bulence (which deforms and eventually brings the drops to break-
age) and the stabilizing action of surface tension (which tends to
preserve the drops integrity). When drops viscosity is different from
that of the carrier fluid, the picture becomes even more complex
since drops viscous dissipation can become important.

In this paper, we precisely focused on the complex interplay
bewteen surface tension (We) and drop-to-fluid viscosity ratio (λ ),
which determines breakage and coalescence of large deformable
drops in turbulence. Specifically, we studied the drops dynamics
using Direct Numerical Simulations (DNS) of turbulence coupled
with a Phase Field Model (PFM). We considered three different val-
ues of We (We = 0.75, We = 1.5 and We = 3), and five different
values of λ (λ = 0.01, λ = 0.10, λ = 1.00, λ = 10.0 and λ = 100).
For the base case λ = 1, we observed that drops dynamics is dom-
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Figure 2. Drops evolution for We = 0.75 and for the two lim-
iting cases λ = 0.01, panels (a)-(c) and λ = 100, panels (d)-(f).
Each panel refers to a given time instant (t+ = 300, t+ = 600 and
t+ = 900). Contour maps of the Turbulent Kinetic Energy (TKE)
computed on a plane passing through the channel center is also
shown.

T KE
2.50

(a) t+ = 300 (b) t+ = 600 (c) t+ = 900

(d) t+ = 300 (e) t+ = 600 (f) t+ = 900

λ
=

0.
01

λ
=

10
0

Figure 3. Drops evolution for We = 3 and for the two limiting
cases λ = 0.01, panels (a)-(c) and λ = 100, panels (d)-(f). Each
panel refers to a given time instant (t+ = 300, t+ = 600 and t+ =

900). Contour maps of the Turbulent Kinetic Energy (TKE) com-
puted on a plane passing through the channel center is also shown.

inated by coalescence for small We (We < 1), with breakup events
entering the picture only for increasing We (We > 1). Interestingly,
we found that this situation is selectively modified for λ 6= 1. For
small We (We < 1), drops deformability remains small and the vis-
cosity ratio λ does not influence the coalescence/breakup rate. For
larger We (We > 1), drops deformability is increased and the vis-
cosity ratio λ can significantly alter the coalescence and breakup
dynamics. In particular, we observed that increasing drops viscos-
ity reduces strongly the breakup rate (and increase the coalescence
rate), very much like a reduction of We does. We linked this result
to the increased value of the drops viscous dissipation which ulti-
mately increases drops stability. Viscosity gradients across the in-
terface of the drops act as modulators of the local shear stresses and
can amplify or damp the inertial turbulence perturbations. Further
analyses are required to examine the phenomena at larger values of
drops to fluid viscosity ratios.
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