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ABSTRACT
We have performed numerical simulations of the inter-

action between a laminar boundary layer flow and an ar-
ray of deep slit-aperture cavities solving fully compress-
ible Navier-Stockes equations with a finite-volume solver
CharLESX . The cavities are included in the computa-
tional domain which allows to study the full interaction
i.e. the excitation mechanism of the liner and its acous-
tic response. The parameter space is explored by vary-
ing the cavity depth D, thus shifting the cavity resonant
modes fr,m = (2m− 1) c

4D , where m is a positive integer.
Four cases, with varying cavity depth were studied. In all
cases, the coupling of the grazing shear layer instabilities
to the acoustic standing waves inside cavities (resonant in-
teraction) leads to the generation of large Kelvin-Helmholtz
(KH) rollers, scaling as λKH = Uc/ fr,1. In some cases, this
coupling leads to the excitation of m > 1 resonant modes
in the upstream cavities. However vortex merge occurring
over the cavities switches the mode m = 1 further down-
stream. Overall, the results suggest that an array of deep
cavities has a promising potential application for passive
flow control.

1 Introduction
Acoustic liners are devices commonly used to attenu-

ate noise emissions for engineering applications. However,
multiple studies have shown that development of that hydro-
dynamic instabilities may be triggered over low-resistance
liners. Pursuing the experimental investigations of Meyer
et al. (1958), Brandes & Ronneberger (1995) and Jüschke
(2006) studied a model liner consisting of an array of thin-
walled deep slit-aperture cavities under acoustic excitation,
in a duct flow configuration. In their measurements, the
sound transmission coefficient is greater than one for fre-
quencies f around the liner resonance frequency fr, suggest-
ing sound generation. Specifically, the sound generation is
maximal for f slightly above the liner resonance frequency.
Such behavior was attributed to the presence of an instabil-
ity over the liner. Flow visualization performed in the vicin-
ity of the liner demonstrating the instability was carried out
using PIV and LDV measurements by Marx et al. (2010)
in a duct flow interacting with a liner characterized with a
similar geometry as in Jüschke (2006). The authors mea-
sured the instability wavelength, amplification rate and its
phase velocity. Phase-averaged visualization evidences the
presence of the spanwise coherent periodic flow structures
over the liner surface. Theoretical stability studies (Rienstra
& Darau, 2011; Scalo & Rahbari, 2015; Marx & Aurégan,

2010) have been able to predict unstable modes and inform
on the threshold parameters to trigger the instability. A ma-
jor difficulty for stability analysis lies in the choice of a rele-
vant base flow, as the flow undergoes a rapid evolution over
the liner (e.g. experimental results by Marx et al. (2010)).
In these studies, the orifice-by-orifice response of the liner
is classically modeled through an homogeneous Impedance
Boundary Condition (IBC):

p̂ = ρ0c0Z(ω)v̂ (1)

where Z(ω) is the dimensionless specific acoustic
impedance, a complex function of the angular frequency,
characterized by a real part (resistance) Re(Z) = R, and
an imaginary part (reactance) Im(Z) = χ . p̂ denotes the
acoustic pressure, while v̂ is the wall-normal acoustic ve-
locity. ρ0 and c0 are respectively the base density and the
base sound speed. Similarly, most numerical simulations
solving Navier-Stokes equations rely on liner modeling by
imposing (1) either in spectral domain or in time domain,
which allows for reducing the computational cost. Xin et al.
(2016) computed the sound transmission coefficients and
the velocity fluctuations in a partially lined duct using Lin-
earized Navier-Stokes Equations (LNSE) with eddy viscos-
ity formulated in frequency domain, using the same geome-
try as in Marx et al. (2010). By taking into account the spa-
tial evolution of the flow field using experimental data from
Marx et al. (2010), authors obtained a good agreement of
the computed transmission coefficient when compared with
experimental results. However the fluctuation wall-normal
velocity amplitudes in the vicinity of the liner remain sig-
nificantly under-predicted. Burak et al. (2009) used LNSE
simulations to study the instability over the liner. The base
flow required for the LNSE computations was provided us-
ing compressible RANS simulations, and an instability pat-
tern was detected in cases with appropriate resolution at the
boundary.

In contrast to frequency-domain solvers, exact impo-
sition of (1) in the time domain and its coupling to an un-
steady Navier-Stokes solver calls for using particular com-
putational methods. Burak et al. (2009) coupled a Navier-
Stokes solver with slip wall conditionad and the Time-
Domain Impedance Boundary Condition (TD-IBC) of Tam
& Auriault (1996). Large eddy simulations of fully de-
veloped turbulent channel flow (Scalo et al., 2015) pro-
vided evidence that, low-resistance IBC (R = 0.01,R = 0.1)
triggers hydrodynamic instability without explicit acous-
tic forcing. The observed increased of wall-normal veloc-
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ity fluctuations vrms in the near-wall region is consistent
with the experimental measurements of Marx et al. (2010),
which shows up to 28% increase of vrms on the lined side of
the duct, without acoustic excitation. While existing studies
clearly demonstrate that an hydrodynamic instability may
develop over the liner, the physical mechanisms of this phe-
nomenon remain unclear. To further understand these phe-
nomena, one may incorporate the cavities within the com-
putational domain, which allows to obtain time-resolved
data in the orifice region. Although these data could be
obtained using experiments, the small size of the cavities
prevents detailed characterization of the flow field in the
cavities. Recently, Zhang & Bodony (2016) carried out sim-
ulations of the temporal development of the interaction be-
tween a single Helmholtz resonator orifice and a turbulent
boundary layer at M = 0.5 subject to strong acoustic ex-
citations. Due to the heavy grid requirements, the authors
had to limit the study to a single cavity. In this paper we
aim at performing numerical experiments to capture the rel-
evant physical mechanisms of the boundary layer/liner in-
teraction. The chosen liner model is a 2D geometry, which
incorporates a large number of cavities and allow for the
spatial development of large wavelength perturbations.

2 Problem Formulation
Experimental investigations of Marx et al. (2010);

Brandes & Ronneberger (1995); Jüschke (2006) focused on
an acoustically excited low-resistance liner, composed of
an array of thin-walled deep cavity slots. In order to isolate
the instability mechanisms, we consider a spatially devel-
oping two-dimensional flow over a flat plate backed by nc
deep slit-aperture cavities without acoustic forcing. Addi-
tionally, we exclude the broadband turbulence excitation by
considering a laminar incoming flow. Figure 1 summarizes
the main geometry parameters of the studied configuration.
A possible set of dimensionless parameters governing the
problem are: i) the Reynolds number based on the incom-
ing boundary layer momentum thickness and free-stream
velocity Reθ = θU∞

ν
, ii) the Mach number M = U∞

c where c
is the free-stream speed of sound, iii) the ratio of momen-
tum thickness to the cavity aperture θ/dx, iv) the ratio of
the cavity aperture to the cavity depth dx/D, v) the percent-
age of open area (or porosity) σ = Ncavitiesdx/Lliner . The
choice of the geometry and flow parameters is inspired by
the experiment Marx et al. (2010). Correspondingly, the
Mach number is set to M = 0.3 and θ/d = 0.6. To fur-
ther simplify the geometry, we study the limiting case in
which the inter-cavity walls have a zero thickness. In com-
parison with the work of Marx et al. (2010), the porosity
σ is increased from 80% to 100% due to inter-cavity zero-
thickness wall assumption, while the Reynolds number is
lowered from Reθ = 4600 to Reθ = 2000 (with a laminar
assumption) to limit the computational cost.

As we will show further, the instability arises due to
the coupling of the acoustic standing wave in the cavity and
the inherent shear layer instabilities. Since dx� D, we ex-
pect y-directed modes of the cavity to be excited. Those
mode frequencies are given by (e.g. Hirschberg & Rienstra
(2004)):

Str,m =
fr,mD

U
=

(2m−1)c
4D

, m = 1,2,3, ... (2)

Ncavities

D

dx

y
X

Case Nc dx/θin D/dx σ

A1 77 1.6 80 1.0
A2 77 1.6 40 1.0
A3 77 1.6 26 1.0
A4 77 1.6 20 1.0

Figure 1: Sketch of the geometry and summary of the pa-
rameters used for the four simulations.

3 Numerical Methodology
The numerical simulations are run using a massively

parallel finite-volume solver for the fully compressible
Navier-Stokes equations on unstructured grids CharLESX .
It has already been applied to a large variety of problems,
ranging from shock-turbulence boundary layer interaction
to high-Reynolds number flows (Moreno et al., 2014; Bo-
dart et al., 2017).

Adiabatic, no-slip boundary conditions are imposed
both on the flat plate and the cavities wall. The array of
cavities is located 10dx downstream the inflow boundary.
The first cavity sets the reference x = 0. The grid spacing in
the streamwise direction is constant for 0≤ x≤ 144dx. Grid
stretching is applied from x≥ 144dx to the outlet boundary
at x = 309dx to ensure negligible influence in the interaction
region.

The computation is initialized with a constant pres-
sure, temperature and density equal to the inlet parame-
ters. The instantaneous velocity profile outside the cavi-
ties is set to an empirical turbulent boundary layer mean
profile U/U∞ = (y/δ )1/7, also imposed at the inlet, while
the flow is initially set at rest within the cavities. After a
transient period Ttransient ≈ 30/ fc,0 (leading cavity acous-
tic cycles), statistics are sampled during a minimum period
of Tsampling = 30U∞/(dxNcavities) convective time units over
the entire lined region.

4 Results
The transient is essentially characterized by the am-

plification of the pressure fluctuation in the cavities, which
eventually saturates. In all considered cases, the interaction
of the flow with the cavities resulted in the generation of the
coherent spanwise vortices convected in the streamwise di-
rection, and coupled to acoustic standing waves in the cavi-
ties. Two distinct flow regions are found in all simulations:
the region starting at the upstream edge of the treated zone
where the instability is convectively amplified and reaches a
saturated state, followed by a second region which is domi-
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Figure 2: Visualization of the instantaneous spanwise vorticity field Ωz for the cases (a) A1; (b) A2; (c) A3; (d)
A4. Note that the cavity depth is shown partially. The spanwise vorticity ranges −3U∞/dx < Ωz < 3U∞/dx (blue
to red)

nated by large-scale Kelvin-Helmholtz (KH) vortices.

To characterize this vortices generation, we consider
the first cavity of the liner. As shown by Elder et al. (1982)
the mechanism of the flow-excited oscillations inside a sin-
gle cavity may be understood in terms of a feedback loop in-
cluding the shear layer and cavity responses. The boundary
layer translates to a separated shear layer after the first cav-
ity upstream edge. The shear layer is known to act as a dis-
turbances amplifier, leading to the developed KH instabil-
ity. Initial perturbation, which arises from numerical noise,
causes periodic upward and downward flapping motion and
eventually the roll-up of the shear layer. Both phenomena
are characterized by unsteady vortical motion, thus associ-
ated with acoustic excitation. The cavity provides a selec-
tive response according to its multiple resonance frequen-
cies given by (6) in the direction normal to the shear layer,
further disturbing the shear layer and closing the feedback
loop. In contrast to the isolated cavity case, this disturbance
is convected to the next cavities (n = 2, ..,Ncavities). The

feedback loop described above needs to be considered for
the n cavities. Each cavity provide a response to the shear
layer modulated by the upstream cavity n− 1, and further
convected to the cavity n+1. The variation of the response
over the cavities leads to the spatial modification of the
shear layer characteristics over the entire liner downstream.
In particular, it results in the imposition of specific cavity
resonant modes. Figure 3 informs on the modification of the
excited modes in the cavities for different streamwise posi-
tions over the liner. The PSD of the pressure fluctuations p′
is computed based on the time history of the pressure fluc-
tuations recorded within the statistically steady state. The
excitation in the first cavity is centered about the resonant
modes given by the equation (6). In particular, the cases
A2, A3, A4 exhibit resonances at m > 1 modes, specifi-
cally m = 11, m = 7, m = 5, centered around a Strouhal
number St = 0.24 St = 0.21, St = 0.20, respectively. This
occurrence may be explained using analytical model of the
feedback loop by Elder et al. (1982), which, based on lin-
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ear theory of Michalke (1965) provides the Strouhal number
the shear layer flapping motion frequency St = M Uc

U ≈ 0.46.
This value requires a correction when the cavity aperture is
small, i.e. δ > dx, to account for convection velocity varia-
tion in the proximity of the cavity no-slip walls. Applying
this correction leads to a closer estimates St = 0.14 with the
simulations. In the A1 case, resonance of this “shear layer”
induced mode is not observed.
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Figure 3: PSD of the pressure fluctuations measured at
the bottom wall of the cavities (a) n = 1, (b) n = 6,
(c) n = 50. (magenta) A1, (orange) A2, (blue) A3,
(black) A4.

Figure 4 quantifies the evolution of the square root of
the momentum coefficient

√
Cµ defined as:

Cµ =
2ρ j

ρ∞U2
∞dx

∫
ori f ice

v2
rmsdx (3)

≈ 2
dxU2

∞

∫
ori f ice

v2
rmsdx (4)

due to weak compressibility effect and ρ∞ ≈ ρ j.
denotes the per-cavity averaged intensity of response

to the hydrodynamic excitation. In all cases, the spatial in-
crease of

√
Cµ from the upstream edge of the lined zone

suggests the convective amplification of the KH instability
until the saturation of the linear growth mechanisms, asso-
ciated with the vortex roll-up. As suggested by both the
vorticity visualization and the FFT spectra, A1 the shear
layer growth is coupled with the mode m = 1 and saturation
is reached at x ≈ 20dx. In the cases A2, A3 and A4 the in-
stability is initially coupled to higher resonant modes The
plateau at x = 6dx and the peak at x = 2dx correspond to
the spatial saturation. The cavity resonant mode is switched
to m = 1 due to the vortex merger which increase of the
rollers’ wavelength as discussed in Ho & Huang (1982) and
therefore the associated decrease of the cavity excitation
frequency.

0 10 20 30 40 50 60 70 80
x/dx

0.00

0.05

0.10

0.15

0.20

0.25

√
Cµ

Figure 4: Square root of the momentum coefficient√
Cµ which denotes the per-cavity averaged intensity

of the induced wall-normal velocity fluctuations at the
cavity-flat plate interface (filled circles): A1, (filled
triangles): A2, (filled diamonds): A3, (crosses): A4

In order to further characterize the instability, the KH
rollers size was measured a-posteriori at the downstream
part of the liner and compared to the estimated wavelength:

λKH = Uc/ fc,0, (5)

where fc,0 is the first cavity resonant mode and Uc is the
vortex convection velocity. The value of the convection ve-
locity is assumed to be Uc = U∞/2, which is commonly
found in literature ( e.g. (Ma et al., 2009; Kook & Mon-
geau, 2002)). A posteriori measurements of λKH were car-
ried out during the post-processing phase using a simple
tracking vortex algorithm which identifies, using a pres-
sure threshold connected isosurfaces surrounding an instan-
taneous pressure local minimum. The vortex location is
considered to be the center of mass of this region. The
measured and the estimated large-scale KH rollers length
scales are summarized in the Table 1. While the measured
and the estimated size of the vortices is in good agree-
ment with Equation (5) for the cases A2, A3, A4. In the
case A1 the estimation disagree by a factor two with our
measurements. We may argue that the development of the
rollers is constrained by a short liner streamwise length
Lliner = ncavitiesdx. In fact, the ratio of the estimated wave-
length to the liner length λKH,A1/Lliner = 0.65, while for
other cases λKH/Lliner ≤ 0.32 which might indicate the lim-
iting ratio for which the finite liner length has little influence
on the KH roller development.

5 Grid Sensitivity Study
In order to study the solution sensitivity to the grid, the

baseline grid was refined in the streamwise direction over
the liner, thus doubling the number of cells per cavity from
nx = 20 to nx = 40. Figure 5 shows the time-averaged wall-
normal velocity fluctuation profile extracted in the n = 50
cavity at y = −10d. At this altitude, the fluid inside the
cavity is not entrained by the external flow, as seen from
the Figure 2. Since the motion is primarily driven by an
acoustic standing wave, the fluctuation velocity profile is
symmetrical, with its maximum located near the wall. Both
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Case Measured λKH
dx

λKH
dx

= Uc
fr,ndx

A1 27 50

A2 20 25

A3 16 17

A4 13 13

Table 1: Comparison of the a-posteriori measured
large-scale Kelvin-Helmholtz rollers wavelength ver-
sus the a-priori estimation λKH = Uc/ fr,0, where Uc
is assumed to account for 0.5U∞

profiles match very well, which indicates sufficient resolu-
tion of both acoustic boundary layer and the standing wave.
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Figure 5: Study of the solution sensitivity to the grid.
The time-average root-mean square vertical velocity
profile inside the cavity n = 50 extracted at y/d =
−10 in case A1 for two grids. (filled circles) nx = 20
cells/cavity; (hollow circles) nx = 40 cells/cavity.

The time-averaged root-mean square velocity fluctua-
tion and the Reynolds stresses u′v′ profile were extracted in
the cavities ni = 1, 15, 25, 75, thus representing the spatial
flow statistics evolution from the upstream edge of the lined
zone until the downstream edge. As shows the figure 6.b ,
both fluctuation profiles are in very good agreement, This
indicates that the refinement of the grid has a negligible in-
fluence on both the recirculation region inside the cavities,
and on the flow over the cavities influenced by the Kelvin-
Helmholtz instability.

6 Perspectives and future work
We have investigated the instability mechanism gener-

ation in the case of flow-excited two-dimensional idealized
liner composed of an array of deep cavities separated by
zero-thickness inter-cavity walls (liner porosity σ = 100%).
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Figure 6: (a) Wall-normal time-averaged velocity
fluctuation profile and (b) Time-averaged Reynolds
stresses u′v′ extracted at the cavities ni = 1, 15, 25, 75
centerline, in the A1 case for two grids (filled cir-
cles) nx = 20 cells/cavity; (hollow circles) nx = 40
cells/cavity. The gray part of the plot indicates the
region lying inside the cavities

In the present work, the incoming flow is laminar at Mach
number M = 0.3. In contrast to the previously conducted
theoretical and numerical studies dealing with a similar
configuration where the liner was modeled by Impedance
Boundary Condition, the cavities are included in the com-
putational domain thus preserving the discrete cavity-by-
cavity nature of the problem. The flow in the entire do-
main is resolved using fully compressible unsteady Navier-
Stokes equations.

The flow response to the variation of the discrete cav-
ity resonance range of frequencies given by was studied by
varying directly the cavity depth, while keeping other sim-
ulation parameters constant. The progressive reduction of
cavity depth in the cases A2-A3-A4 (thus to the shift of all
cavity resonant modes toward higher frequencies) resulted
in strong coupling of the high (m > 1) cavity resonance
modes to the shear layer flapping frequency in upstream
liner’s cavities. This coupling leads to a high instability
amplification ratios leading to the shear layer roll up over
a short distance. The rollers convected downstream will
eventually merge, which decreases the excitation frequency
associated to the roller and increases its wavelength. The
merging process switches the cavity excitation mode. In the
A1 case, the m = 1 mode is convectively amplified until the
linear instability growth mechanisms saturation which cor-
responds again to the shear layer roll-up. Consequently, the
flow in the downstream part of the liner is dominated by
the large-scale vortex structures scaling as λKH = Uc/ fr,m,
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where Uc ≈ 0.5U∞ . Overall, the results suggest that the ar-
ray of subsequent deep cavities has a potential for passive
flow control, i.e. such devices would allow to introduce the
perturbations at a desired frequency controlled by the cavity
depth, while the energy is extracted from the mean flow.

Further effort will be also invested to extend existing
feedback loop models describing self-sustained cavity os-
cillations onto a multiple-cavities case.
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