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ABSTRACT
Porous and patterned surfaces appear in many turbulent flows

of engineering and scientific interest. Yet, there are few computa-
tionally efficient models that can predict how such complex walls
alter spectral and structural features of the turbulent flow field. The
present effort seeks to address this limitation by extending the re-
solvent formulation proposed by McKeon & Sharma (2010). Under
the resolvent formulation, the turbulent velocity field is expressed as
a linear superposition of propagating modes, identified via a gain-
based decomposition of the governing Navier-Stokes equations. To
account for porous and patterned surfaces, the resolvent framework
is extended to the volume-averaged Navier-Stokes equations, such
that the effect of the complex substrate appears explicitly as an ad-
ditional body force: a generalized version of Darcy’s law. The
permeability is infinite within the fluid domain so that the body
force is zero. Solid domains are modeled as regions with (near)
zero permeability. For a complex porous substrate, the permeabil-
ity depends on the specific microstructure i.e. the size, distribution,
and alignment of pores. Preliminary results show that a gain-based
decomposition of the volume-averaged Navier-Stokes equations is
able to reproduce many key observations from previous simula-
tions of flow over streamwise-constant riblets (Garcia-Mayoral &
Jimenez, 2011) as well as homogeneous porous media (Breugem
et al., 2006).

INTRODUCTION
Many turbulent flows in nature and engineering are character-

ized by the presence of complex walls (e.g. porous, rough, or pat-
terned) that can substantially alter the near-wall turbulence. For
example, in flows over porous media and vegetation canopies, the
streaks and streamwise vortices prevalent in smooth-walled flows
are often replaced by structures resembling Kelvin-Helmholtz vor-
tices (Breugem et al., 2006; Ghisalberti, 2009). In recent years,
similar large-scale structures have also been observed over riblets
(Garcia-Mayoral & Jimenez, 2011; Garcı́a-Mayoral & Jiménez,
2011), modifying the traditional view that the deterioration of riblet
performance with increasing riblet spacing is due to the lodging
of near-wall streamwise vortices within the riblet grooves. While
stability analyses can reproduce some of these observations, they
are limited in their ability to generate low-order models for spectra
and coherent structure in fully turbulent flows. The present effort
seeks to address this limitation by extending the resolvent formula-
tion proposed by McKeon & Sharma (2010) to account for complex
walls.

MODELING APPROACH
Resolvent Formulation

The resolvent formulation decomposes the full turbulent ve-
locity field into a limited set of highly-amplified traveling waves, or
modes, identified directly from the governing NSE. Specifically, the
formulation interprets the Fourier-transformed NSE as a forcing-
response system with nonlinear feedback. For each wavenumber-

frequency triplet k = (κx,κz,ω), corresponding to a traveling wave
of specified streamwise wavelength (λx = 2π/κx), spanwise wave-
length (λz = 2π/κz), and frequency, the nonlinear terms, fk =
(−u ·∇u)k, are interpreted as the forcing that gives rise to a velocity,
uk, and pressure, pk, field in response. The transfer function that
maps the nonlinear forcing to the velocity and pressure response is
the resolvent operator Hk. With this forcing-response interpreta-
tion, the Fourier-transformed NSE can be expressed compactly as:
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fk = Hkfk (1)

where uk, pk, and fk represent the complex Fourier coefficients
that vary in the wall-normal (y) direction, and the common com-
plex exponential exp i(κxx+κzz−ωt) has been omitted from both
sides. Lk is the linearized Navier-Stokes operator, which requires
knowledge of the mean velocity profile, U(y). The first row of the
expression inside the parenthesis on the right-hand side represents
the momentum equations, while the second row enforces continu-
ity ∇ · u = 0. Keep in mind that the formulation presented above
is only valid for fully developed channel or pipe flows, which can
be considered homogeneous in the streamwise and spanwise (or az-
imuthal) directions and stationary in time. However, it can also
approximate boundary layer flows, assuming slow variation in the
streamwise direction.

Even though the resolvent framework interprets the NSE as a
linear forcing-response system, this does not mean that the equa-
tions have been linearized. A complete description of the flow still
requires knowledge of how the velocity responses interact to gen-
erate the nonlinear forcing fk. The resolvent operator can be con-
sidered a filter that determines how this forcing is translated into
velocity and pressure responses across spectral space. A major
contribution of the resolvent framework lies in the finding that the
transfer function Hk tends to be low-rank at wavenumber-frequency
combinations energetic in natural flows (Moarref et al., 2013). In
other words, Hk is a very directional amplifier: only a few forc-
ing functions lead to highly amplified velocity responses. As a re-
sult, the forcing-response relationship is well approximated by the
first modes calculated under a simple singular value decomposition
(SVD) of the resolvent (McKeon & Sharma, 2010):

Hk = ∑
m

ψmσmφ
∗
m ≈ ψ1σ1φ

∗
1 . (2)

Physically, this means the first response mode (left singular vector,
ψ1) is so highly amplified that it is expected to dominate the flow
field at that wavenumber-frequency combination, as long as some
forcing exists in the direction of the first forcing mode (right singu-
lar vector, φ1). The first singular value σ1 represents the degree of
amplification in an L2 energy sense. Previous studies have shown
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that this rank-1 approximation reproduces key features of wall-
bounded turbulent flows (Moarref et al., 2013; Sharma & McKeon,
2013; Luhar et al., 2014a) with minimal computation and also ac-
counts for the effects of passive and active control (Luhar et al.,
2014b, 2015). This rank-1 approximation also forms the basis of
the low-order modeling framework described below.

Volume Penalization
To account for porous and patterned surfaces, the resolvent

framework is extended to the volume-averaged NSE, such that the
effect of the complex substrate appears explicitly as an additional
body force (Khadra et al., 2000; Breugem et al., 2006):

∂u
∂ t

+
1
ε

∇ · (εuu) =−∇p+
1

εReτ

∇
2
εu− K−1

Reτ Da
εu. (3)

In Eq. 3, ε is the porosity, Reτ = uτ h/ν is the friction Reynolds
number where uτ is the friction velocity and h is the channel half-
height (or boundary layer thickness), Da=K0/h2 is the Darcy num-
ber with K0 being a representative permeability, and K is the per-
meability tensor normalized by K0.

Within the fluid domain, the porosity is ε = 1 and the per-
meability tensor is isotropic, K = KI, with K = K f → ∞. In
other words, the body force term is zero and Eq. 3 reduces to the
NSE. Solid domains (e.g. riblets) are modeled as homogeneous,
isotropic porous media with porosity ε ≈ 1 but negligible perme-
ability, K = KsI with Ks → 0. In other words, the body force is
maximum in the solid domain such that the velocity is driven to
|u| → 0. For a complex porous medium, K depends on the specific
microstructure: the size and alignment of pores.

Note that the form and appearance of the extra permeability
term in Eq. 3 has been justified rigorously for flows through porous
media using homogenization methods (Ochoa-Tapia & Whitaker,
1995a,b). The assumption that a solid can be effectively modeled as
a porous medium with negligible permeability is admittedly ad hoc.
However, this assumption has been shown to converge to the no slip
boundary condition as Ks → 0. Further details on the mathemati-
cal justification and formal convergence properties of this volume-
penalizing formulation for solid domains can be found in Angot
et al. (1999) and Khadra et al. (2000).

For the current effort, the key advantage of volume penalization
is that it enables an extension of the resolvent analysis to arbitrarily
complex wall properties and geometries while maintaining the lin-
earity of the forcing-response transfer function and the convenience
of working in Fourier space. In other words, since any complex
patterned or porous substrate can be modeled as a spatially varying
permeability, the effect of the surface has a well-defined spectral
representation involving the Fourier components of K. Eq. 3 can
be Fourier-transformed in the streamwise direction, spanwise direc-
tion, and time, and expressed as:
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where the inverted operator on the right-hand side is the modified
resolvent, accounting for the new mean velocity profile as well as
the complex wall.

For a porous medium that is homogeneous in the streamwise
and spanwise directions, the mean velocity profile and the perme-
ability tensor are constant in x and z, which means that the resolvent

analysis can proceed as before on a mode-by-mode basis. However,
for a spatially-varying complex wall, the mean velocity profile and
the permeability tensor also vary in space, i.e. their Fourier repre-
sentation may involve multiple, (κx,κz) combinations. In this case,
Eq. 4 represents a coupled system of interacting Fourier modes (k̃).

Numerical Approach
This paper considers (i) the effect of streamwise-constant rect-

angular riblets at Reτ = 180 (after Garcia-Mayoral & Jimenez,
2011) and (ii) a channel that is partially filled with a porous medium
with ε = 0.95 and Da = 1.9×10−4 at Rep

τ = 498, defined using the
friction velocity at the porous interface (after Breugem et al., 2006).
In both cases, the numerical implementation involves a pseudospec-
tral discretization in the wall-normal direction on N ≥ 100 Cheby-
shev collocation points over the channel half-height.

To account for the effect of riblets with spacing s and varying
cross-section, the permeability is modeled as spanwise-periodic. In
the solid domain, corresponding to the local riblet width b(y), the
permeability goes to zero (actually, 10−8). In the fluid domain, the
permeability is infinite, such that K−1 = 0. This periodic train of
permeability ‘pulses’ has a well-defined Fourier representation in-
volving harmonics of the spanwise wavenumber κs = 2π/s:

K−1 = K−1I =
∞

∑
n=−∞

an(y)exp(inκsz)I, (5)

where the Fourier coefficients an(y) depend on the height and shape
of the riblets. Similarly, the modified mean velocity profile over
the riblets also includes harmonics of the spanwise wavenumber κs.
For this spatially-varying permeability, Eq. 4 represents a coupled
system of Fourier components with wavenumber-frequency combi-
nations

k̃ = (κx,κz +
∞

∑
n=−∞

nκs,ω). (6)

In principle, the analysis can proceed as before with for this cou-
pled system, truncated numerically to ±NH harmonics of κs. How-
ever, the size of the resolvent operator becomes 4N(2NH + 1)×
4N(2NH + 1) in this case. For reasonable choices of N and NH
(N = 100 and NH = 12 led to convergence to O(10−2)), this makes
matrix inversion and the SVD computationally expensive for low-
order modeling purposes.

To make the computation for riblets more tractable, a two-step
procedure is employed. In the first step, the resolvent operator is
computed without accounting for the presence of the substrate or
additional harmonics in the mean velocity profile. An SVD is used
to identify the most amplified forcing and response modes for this
simplified resolvent operator. In the second step, the most amplified
response mode is corrected to account for interactions with addi-
tional harmonics in the mean profile and the complex substrate (i.e.
to enforce the boundary conditions), such that Eq. 4 is satisfied. Es-
sentially, this second step amounts to solving a coupled system of
linear equations for the rank-1 response mode and the additional ve-
locity harmonics introduced by interactions with spatially-varying
K. Depending on the exact spectral features of K, this modification
of the rank-1 response can result in the mode being further ampli-
fied, or energy being transferred to other wavenumber-frequency
combinations.

Note that construction of the resolvent operator also requires
mean velocity profiles. For the porous medium, the model predic-
tions utilize the mean velocity profile obtained in DNS (Breugem
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Figure 1. Mean flow predictions for riblets. (a) The predicted slip velocity at the riblet tips as a function of riblet spacing s+ for three different
riblet morphologies; DNS data from (Garcia-Mayoral & Jimenez, 2011). In all cases, riblet height is 0.5s+. (b) Mean streamwise velocity for
three different cases identified in (a) by the red box. The dashed contour lines show increments of 2uτ .

et al., 2006). For the riblets, the mean profile is computed using
Eq. 4, with an eddy viscosity formulation for the region above the
riblets (Reynolds & Tiederman, 1967). The flow within the riblet
grooves is assumed to remain laminar. Despite these simplifica-
tions, Fig. 1 shows that predicted slip velocity at the top of the ri-
blets agrees well with DNS results for rectangular cross-sections.
To showcase the versatility of volume penalization, mean velocity
predictions are also generated for triangular and T-shaped riblets.
As expected intuitively, the slip velocity is higher over triangular
riblets and lower for T-shaped riblets.

RESULTS
The potential of the volume-penalized resolvent framework is

demonstrated in Figs. 2-4, which compare model predictions for
spectra and flow structure with previous DNS for turbulent channel
flow over riblets and porous media.

Riblets
Fig. 2 compares model predictions for velocity and Reynolds’

stress spectra with DNS results above rectangular riblets with
spacing s+ = 28, which increase skin friction (Garcia-Mayoral &
Jimenez, 2011). These predictions for the premultiplied wavenum-
ber spectra assume broadband forcing. That is, the nonlinear forc-
ing is assumed to be in the direction of the most dangerous forcing
mode φ1 at all wavenumber frequency combinations. The result-
ing velocity and pressure fields are then numerically integrated over
frequency ω . These spectra are computed for wavelengths rang-
ing from (λ+

x ,λ+
z )≈ 10 to (λ+

x ,λ+
z )≈ 103, and frequencies corre-

sponding to propagation speeds c+ = ω+/κ+
x ranging from 0 to the

maximum value of U+.
Despite the many simplifying assumptions (rank-1 approxima-

tion, broadband forcing, two-step procedure), the model is able to
capture the trends observed in DNS reasonably well. In particular,
the model successfully predicts the emergence of structures that are
long in the spanwise direction, and contribute substantially to the
premultiplied spectrum for wall-normal velocity, κxκzEvv (middle
panel). Garcia-Mayoral & Jimenez (2011) attribute the emergence
of these spanwise structures to a Kelvin-Helmholtz type of mecha-
nism, and suggest that these structures are primarily responsible for
the breakdown of the viscous regime within the riblet grooves. An-
other interesting feature captured by the model is the enhanced am-
plification of structures with spanwise wavelength shorter than the
spacing s+ in the spectra for wall-normal velocity and Reynolds’
stress. Finally, the model also predicts relatively minor changes to
κxκzEuu compared to the smooth-wall case, which is consistent with
the DNS.

Of course, there are some important quantitative differences.

For instance, the spanwise structures observed in DNS have wave-
length λ+

x ≈ 150, while the model predicts that structures with
λ+

x ≈ 80 are most energetic. This is consistent with the sim-
plified instability analysis pursued by Garcia-Mayoral & Jimenez
(2011), which also suggests that structures with spanwise wave-
length λ+

x < 100 have the highest growth rates. In general, for both
the riblet and smooth wall predictions, the model is biased towards
smaller wavelengths compared to the DNS. This could potentially
be attributed to the broadband forcing assumption. In the real flow,
there is unlikely to be significant nonlinear forcing at smaller length
scales, particularly close to the wall.

Figure 3 compares a snapshot from DNS with predic-
tions that include velocity contributions from just two rank-1
modes, corresponding to the near-wall cycle and the Kelvin-
Helmholtz type structures that emerge over riblets. Specifically,
this figure superposes contributions from resolvent modes with
nominal wavenumber-frequency combinations (λ+

x ,λ+
z ,c+) =

(103,102,10) and (λ+
x ,λ+

z ,c+) = (150,840,6), along with the cou-
pled harmonics introduced by spanwise variations in mean velocity
and permeability. The inset in Fig. 3a confirms that volume pe-
nalization successfully drives the velocity to zero within the solid
domain (n.b. all vectors have been plotted). For this combination
of modes, the no-slip boundary condition at the riblet surfaces is
enforced to O(10−3) and the predicted velocities within the solid
domain are even smaller. The two modes qualitatively reproduce
many flow features from DNS, including regions of alternating posi-
tive and negative velocity with spanwise length scale corresponding
to the riblet spacing, intermittent bursts of high activity, evidence of
meandering, and extended regions of spanwise and streamwise co-
herence. In addition, the counter-rotating vortices associated with
the near-wall cycle are pushed up above the riblets.

Homogeneous Porous Medium
As further evidence of the predictive capability of the modified

resolvent framework, Fig. 4 compares model predictions with DNS
results for turbulent flow in a channel that is partially filled with
a homogeneous porous medium (Breugem et al., 2006). Model
predictions for the premultiplied spectra of streamwise and wall-
normal velocity, shown in Fig. 4a-b, suggest that the flow at the
porous interface is dominated by structures with large spanwise
length scales, λz/h > 1, and relatively low aspect ratios, λx ≈ λz
(shaded contours). In contrast, the streamwise velocity spectrum
near the top, smooth wall is dominated by longer structures with
limited spanwise extent (λx ≈ 2h and λz ≈ 0.2h; solid lines). Note
that these predicted spectra once again invoke the broadband forc-
ing assumption.

Importantly, these spectral predictions also help identify resol-
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Figure 2. Spectral predictions for riblets. (a) From left to right: premultiplied spectra for u2, v2 and Reynolds’ stress at y+ ≈ 5 from DNS
by Garcia-Mayoral & Jimenez (2011) over rectangular riblets with spacing s+ = 28 at Reτ = 180. Note that y+ = 0 corresponds to the tips
of the rectangular riblets. The superimposed solid contours show the smooth-wall case. (b) Corresponding premultiplied spectra predicted
by resolvent model, assuming broadband forcing. The dashed horizontal line represents the riblet spacing. The solid contours again show
predictions for the smooth-wall case.

Figure 3. Predicted flow structure over riblets. (a) Resolvent-based predictions of wall-normal velocity at y+ ≈ 5 over riblets with spac-
ing s+ = 28 at Reτ = 180. These predictions were obtained by combining just two modes, characterized by length and velocity scales
(λ+

x ,λ+
z ,c+) = (103,102,10) and (λ+

x ,λ+
z ,c+) = (150,840,6). Black shading represents negative velocity and white shading represents

positive velocity. (b) Snapshot from DNS for identical riblet geometry and Reynolds number (Garcia-Mayoral & Jimenez, 2011).

vent modes can serve as representative models for dynamically-
important flow features. The flow field for a resolvent mode that
is highly energetic at the top wall is shown in Fig. 4d, while the
flow field for the mode that contributes the most to the wall-normal
velocity at the porous interface is shown in Fig. 4e. These modes
correspond to the wavenumber combinations highlighted in Fig. 4a
and Fig. 4b, respectively. Consistent with the DNS snapshot shown
in Fig. 4c, the resolvent mode energetic at the smooth wall has
alternating regions of high- and low- streamwise velocity with a
slightly inclined shear layer separating the two. This mode fea-
tures counter-rotating vortices in the spanwise-wall normal plane
(not shown here), and is structurally similar to the dynamically im-
portant near-wall cycle (Robinson, 1991; Waleffe, 1997; Schoppa

& Hussain, 2002). In contrast, the resolvent mode that is most en-
ergetic at the porous interface shows the presence of taller vortices
that penetrate well into the porous medium (y < 0) and generate
counter-rotating spanwise rollers in the fluid domain. The length
scale of this interfacial structure and the predicted flow field both
bear strong resemblance to the DNS observations. This interfacial
structure once again resembles Kelvin-Helmholtz type vortices that
are known to appear in flows over vegetation canopies and porous
media.

DISCUSSION
The preliminary results presented in this paper suggest that

the volume-averaged Navier-Stokes equations provide a useful
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Figure 4. Predictions for porous medium. (a) Shaded contours showing model predictions for the premultipled spectrum of streamwise
velocity, κxκzEuu, at the porous interface. The solid contours show model predictions near the top, smooth wall. (b) Model predictions for the
premultiplied spectrum of wall-normal velocity, κxκzEvv, at the porous interface. (c) Snapshot of turbulent flow field over permeable medium
from DNS by Breugem et al. (2006). (d,e) Predicted flow fields for the most amplified resolvent modes at the wavenumber combinations
identified in highlighted in plots (a) and (b), respectively.

framework for the development of low-order models based on
resolvent analysis for turbulent flows over porous and patterned
walls. Volume-averaging is standard in the study of porous media
flows, while volume-penalization allows for useful approximation
of spatially-varying surface features.

Keep in mind that volume-penalization does have two impor-
tant limitations when it comes to modeling surface features. First,
the boundary conditions will not be satisfied exactly. Second, vol-
ume penalization is likely to work best for periodic or regular sur-
faces with limited spectral content, such that the coupled prob-
lem involving multiple Fourier harmonics remains computationally
tractable. While the first limitation precludes accurate prediction of
quantities like local wall shear stress, it still allows for the develop-
ment of wall models that link spectral features of the surface with
those of the flow. The second limitation makes the modeling of ir-
regular, rough surfaces challenging. However, recent successes in
the development of low-order representations of rough surfaces via
proper orthogonal decomposition (Mejia-Alvarez & Christensen,
2010) suggest that retaining a small number of Fourier harmonics
could still yield useful results.

Moving forward, the framework developed here will be used
to (i) evaluate the effect of streamwise-constant riblets with varying
shape and size, and (ii) to consider how the large-scale structures
identified in flows over porous media scale with the Reynolds num-
ber and Darcy number.
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Garcı́a-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets.
Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 369 (1940),
1412–1427.

Garcia-Mayoral, Ricardo & Jimenez, Javier 2011 Hydrodynamic
stability and breakdown of the viscous regime over riblets. Jour-
nal of Fluid Mechanics 678, 317–347.

Ghisalberti, M. 2009 Obstructed shear flows: similarities across
systems and scales. Journal of Fluid Mechanics 641, 51–61.

Khadra, Khodor, Angot, Philippe, Parneix, Sacha & Caltagirone,
Jean-Paul 2000 Fictitious domain approach for numerical mod-
elling of navier–stokes equations. International journal for nu-
merical methods in fluids 34 (8), 651–684.

Luhar, M., Sharma, A. S. & McKeon, B. J. 2014a On the structure
and origin of pressure fluctuations in wall turbulence: predictions
based on the resolvent analysis. Journal of Fluid Mechanics 751,
38–70.

Luhar, M., Sharma, A. S. & McKeon, B. J. 2014b Opposition con-

3C-4



trol within the resolvent analysis framework. Journal of Fluid
Mechanics 749, 597–626.

Luhar, M., Sharma, A. S. & McKeon, B. J. 2015 A framework
for studying the effect of compliant surfaces on wall turbulence.
Journal of Fluid Mechanics 768, 415–441.

McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for
turbulent pipe flow. Journal of Fluid Mechanics 658, 336–382.

Mejia-Alvarez, R & Christensen, KT 2010 Low-order representa-
tions of irregular surface roughness and their impact on a tur-
bulent boundary layer. Physics of Fluids (1994-present) 22 (1),
015106.

Moarref, Rashad, Sharma, Ati S, Tropp, Joel A & McKeon, Bever-
ley J 2013 Model-based scaling of the streamwise energy density
in high-Reynolds number turbulent channels. Journal of Fluid
Mechanics 734, 275.

Ochoa-Tapia, J. A. & Whitaker, S. 1995a Momentum transfer at the
boundary between a porous medium and a homogeneous fluidi.

theoretical development. International Journal of Heat and Mass
Transfer 38 (14), 2635–2646.

Ochoa-Tapia, J. A. & Whitaker, S. 1995b Momentum transfer at the
boundary between a porous medium and a homogeneous fluidii.
comparison with experiment. International Journal of Heat and
Mass Transfer 38 (14), 2647–2655.

Reynolds, W. C. & Tiederman, W. G. 1967 Stability of turbulent
channel flow with application to Malkus’s theory. Journal of
Fluid Mechanics 27, 253–272.

Robinson, S. K. 1991 Coherent motions in the turbulent boundary-
layer. Annual Review of Fluid Mechanics 23, 601–639.

Schoppa, W. & Hussain, F. 2002 Coherent structure generation in
near-wall turbulence. Journal of Fluid Mechanics 453, 57–108.

Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall
turbulence. Journal of Fluid Mechanics 728, 196–238.

Waleffe, F. 1997 On a self-sustaining process in shear flows. Physics
of Fluids 9 (4), 883–900.

3C-4


