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ABSTRACT
We present a study on the suitability of under-resolved DNS

(uDNS) – also called implicit LES (iLES) – approaches based on
spectral element methods (SEM), with emphasis on high-order con-
tinuous and discontinuous Galerkin (i.e. CG and DG) schemes.
Broadly speaking, these are model-free eddy-resolving approaches
to turbulence which solve the governing equations in unfiltered form
and rely on numerical stabilization techniques for small-scale regu-
larization. Model problems in 1D, 2D and 3D are used in the assess-
ment of solution quality and numerical stability. A rationale for the
excellent potential of these methods for transitional and turbulent
flows is offered on the basis of linear dispersion-diffusion analysis.

INTRODUCTION
SEM-based uDNS / iLES approaches have received significant

attention over the last few years (Uranga et al., 2011; Beck et al.,
2014; Vermeire et al., 2016; Fernandez et al., 2017). In some cases,
these have been shown to outperform classic LES approaches with
sophisticated modelling and provide superior results for the same
number of DOFs, see e.g. (Gassner & Beck, 2013; Lombard et al.,
2016). However, very few studies have investigated the question of
why these methods are able perform so well. Moreover, it is im-
portant to explore under which conditions they can fail to produce
usefully accurate solutions or even “crash” due to under-resolution.
As SEM approaches differ depending on design variables such as
discretization order, Riemann solver, polynomial dealiasing and al-
ternative stabilization strategies, it is crucial to analyse the effect of
these variables on solution quality and numerical robustness.

As SEM-uDNS relies on stabilization techniques such as up-
wind dissipation for DG (Moura et al., 2015b) or spectral vanish-
ing viscosity for CG (Moura et al., 2016b) in lieu of subgrid-scale
models, the assessment of numerical diffusion effects is of key im-
portance in understanding why and how to use these methods. Note
that traditional iLES approaches (Grinstein et al., 2007) justify their
suitability by comparing truncation errors of candidate schemes to
known LES models. Modified equation analysis has been employed
to show that the leading truncation terms of certain schemes resem-
ble mixed subgrid-scale models (Margolin & Rider, 2002). As this
seems unlikely to hold for high-order SEM (Moura et al., 2015a),
the terminology under-resolved DNS is preferred here. In the next
section, a case will be made that the suitability of SEM-uDNS stems
primarily from the fact that dissipation is only significant at small
flow scales. Interestingly, this is also the main property that tradi-
tional iLES approaches seek (Margolin & Rider, 2005).

Insights about the distribution of dissipation across scales can
be obtained from linear dispersion-diffusion analyses, whose rele-
vance to under-resolved simulations has been discussed in (Moura
et al., 2015b). There, a simple criterion to estimate DG’s resolu-
tion power was proposed and tested against Burgers turbulence in
1D. This criterion was recently adapted with success to 3D flows
(Moura et al., 2017). The present paper discusses these results and
new ones obtained with CG for vortex-dominated flows in 2D.

BURGERS TURBULENCE IN 1D
Numerical experiments on Burgers turbulence in one dimen-

sion have been conducted with DG by Moura et al. (2015b). The
inviscid Burgers equation was simulated in a periodic setting with
a forcing term that granted a Kolmogorov-like slope on the inertial
range of the energy spectrum. Due to the absence of viscosity, DG’s
upwind dissipation is the only source of diffusion present. The
dissipation characteristics obtained from DG’s dispersion-diffusion
analysis for linear advection are shown in Fig. 1. It basically shows
a plot of (normalized) dissipation vs. (normalized) wavenumber for
various discretization orders.

Figure 1. DG’s numerical diffusion vs. wavenumber kh/(p+ 1),
with h being the mesh spacing and p the polynomial order.

In the simulations, several polynomial orders p have been con-
sidered on a fixed DOF basis, where nDOF = ne` m, with m = p+1
being the number of polynomial modes per element and ne` the to-
tal number of mesh elements. Therefore, larger p were assigned
to smaller ne` and vice-versa, so that discretizations of different or-
ders are compared at a similar cost measure. Note that Fig. 1 also
compares different orders on a same DOF basis, since h ∝ 1/ne`.

A high-order solution is compared to a low-order one in Fig. 2,
which shows that using larger p with coarser grids is beneficial
given the wider range of scales captured. This is consistent with
Fig. 1, as higher orders are shown to yield a larger dissipation-free
wavenumber range. A measure of spectral resolution power based
on the extent of this dissipation-free range has been proposed in
(Moura et al., 2015b) and shown to accurately pinpoint the begin-
ning of a numerically-induced dissipation range on energy spectra.

The success of the estimates mentioned above indicates that
linear dispersion-diffusion analysis can in fact provide insights on
the suitability of spectral element methods (DG in particular) for
under-resolved turbulence simulations. It seems that DG’s high-
order upwind dissipation is negligible for a reasonably large range
of wavenumbers, beyond which it rises sharply. In this sense, the
advocated methodology is similar to a direct numerical approach
where hyperviscosity is used to truncate the energy spectrum (Lam-
ballais et al., 2011; Dairay et al., 2017). If truncation is placed well
within the inertial range, large scales can be faithfully represented.
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Figure 2. Burgers turbulence at a given time, comparing second-order (left) and eight-order (right) solutions with same DOFs.

VORTEX-DOMINATED FLOWS IN 2D
This section is devoted to numerical experiments conducted

with CG on two-dimensional vortical flows. Emphasis is placed on
the effects of mesh coarsening upon wake structures. Since mesh
spacing is typically increased along turbulent wakes in simulations,
it is important to assess the effects of this practice in the accuracy
and stability of computations. The problem considered is that of a
flow in a channel (with free-slip walls) where a cross-flow screen is
placed before the inlet of the domain, see Fig. 4.

With the appropriate inflow conditions, instabilities develop
soon after the inlet and a turbulent-like vortical state sets in. Wake
structures are then carried away by the mean flow and leave the
domain through an outlet, where outflow boundary conditions are
applied. The main test case to be discussed here had a domain
composed of two parts. One of them covered the first 60% of the
domain and had an equispaced mesh of square-shaped elements.
The remaining part had a mesh with six times less elements in the
streamwise direction, but the same cross-flow distribution of ele-
ments. This amounted to an increase factor of four in the streamwise
mesh spacing for the domain’s second part. Fifth-order polynomials
(p = 5) have been used in all the elements.

The distribution of streamwise velocity of a CG-based incom-
pressible flow solution is depicted in Fig. 4. Note that small-scale
features quickly disappear after ‘station 60%’, since the largest
wavenumber one can hope to capture given p is inversely propor-
tional to the mesh spacing h (Fig. 1). This test case has a Reynolds
number of 3 ·104, based on the inflow length scale and (unit) mean
velocity. Decreasing the viscosity caused the simulation to crash
after a certain time. Spectral analysis indicated a build-up of small-
scale energy prior to station 60%, as shown in Fig. 5, which was
found to be the primary cause of numerical instability. The spec-
tra have been generated as follows. Fluctuations of velocity were
recorded over a sufficiently long time interval at 20 equispaced sta-
tions along the streamwise direction. Each station had several prob-
ing points, so that the spectrum at a given station is actually av-
eraged in the cross-flow direction. Averaging is performed after a
power spectral density (PSD) distribution is obtained for each of the
probing points in a section. Fig. 5 shows PSD curves of the cross-
flow velocity vs. angular frequency ω (scaled by h/p) for the 20
streamwise stations. As a unit mean velocity has been used, ω can
also be regarded as a streamwise wavenumber k via Taylor’s frozen
flow hypothesis. The vertical dashed lines in Fig. 5 mark kh/P = 3
which is estimated from Fig. 3 to be the wavenumber after which
dissipation becomes significant.

Linear dispersion-diffusion analysis is again relied upon as a
source of insight on accuracy and robustness. We consider spec-
tral vanishing viscosity (SVV) as a possible stabilization technique.

SVV can be regarded as a modified diffusion operator that damps
mainly high-order polynomial coefficients (a low-pass filter). Fig. 3
shows absolute values of CG’s numerical dissipation for linear ad-
vection with and without SVV. Two propagation modes exist in each
case, a regular one (physical) and a spurious one related to reflected
waves. The latter originate when mesh spacing varies and can actu-
ally be seen in Fig. 4 as noise slowly dissipated upstream of station
60%. Without SVV, regular and reflected modes coincide and there
is nearly zero damping for the reflected mode for a large wavenum-
ber range. SVV damps considerably the reflected waves, but also
affects the physical ones by shortening the dissipation-free range.

The energy pile-up observed in Fig. 5 is believed to be caused
by a non-linear interaction between incoming vortical structures
and the reflected noise, as if it was a forcing mechanism causing
‘turbulence’ to grow. While SVV reduces the noise and stabilizes
simulations, it also damps small scales otherwise captured. Hence,
it is hard to know a priori the ideal amount of SVV to be added
– note that Fig. 3 is just a representative example since SVV has
several design parameters. An alternative is to tune SVV diffusion
levels to match those of standard upwind DG. This has been done
by Moura et al. (2016b) for temporally evolving problems, but only
more recently extended to spatially developing flows. This latter
extension is discussed here for the first time. The key principle is
to optimize SVV’s parameters so as to match the slope of DG’s
dissipation curves in log-log plots. Due to DG’s superconvergence
properties (Hu & Atkins, 2002) manifested near the origin of those
plots, it was impossible to match same-order discretizations. This
motivated us to match CG order p to DG order p− 2. Excellent
matching was achieved for CG with p = 3, . . . ,10. The resulting
CG discretizations were found to be very robust. For the vortical
flows under consideration, computations remained stable regardless
of the Reynolds number, even in essentially inviscid cases. These
even matched (visually) flow fields produced by inviscid DG-based
cases (of order p−2).

Figure 3. CG’s dissipation with and without SVV.
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Figure 4. Streamwise velocity contours in 2D vortical flow. Streamwise mesh spacing increases after 60% of domain length.

Figure 5. Power spectral density of crossflow velocity at different sections along the streamwise direction. Energy pile-up is observed just
before the change in streamwise mesh spacing. Curves have been shifted horizontally by ten units each for clarity.

An additional constraint in the optimization process made sure
that dissipation levels of the spurious (reflected) eigenmodes were
always above a given threshold — causing spurious reflections to
be practically eliminated in the test cases. Also, as a natural out-
come of the optimization strategy, premature dissipative “bumps”
(cf. Fig. 3) were slightly overcome due to the target dissipation lev-
els adopted. This resulted in strictly monotonic dissipation curves,
preventing potentially undesirable non-smooth dissipative features.
A drawback of the proposed strategy is that relatively large dissi-
pation is assigned to lower-order discretizations, especially p = 3,
which had a clearly reduced resolution power for the model problem
considered. However, increasing p does recovered good resolution
power per DOF, as happens with DG.

TRANSITIONAL / TURBULENT FLOWS IN 3D
In this section we discuss DG-based solutions of the inviscid

and (nearly) incompressible Taylor-Green vortex (TGV) flow (Shu
et al., 2005). This is a model problem featuring transition and turbu-
lence decay in a triply-periodic domain that extremely demanding
in terms of numerical robustness. The Euler equations have been
solved directly with Mach = 0.1, but the presence of numerical vis-
cosity is expected to make solutions consistent with the dissipative
behaviour of infinite Reynolds number. In comparison to traditional
LES, this scenario corresponds to that where molecular viscosity ef-
fects are negligible and a subgrid-scale model acts alone.

An extensive set of test cases have been conducted for various
polynomial orders (p = 3, . . . ,7) on different grids of cubic-shaped
elements. This allowed for an assessment of DG’s performance for
uDNS of free transitional / turbulent flows at very high Reynolds
numbers on a fixed DOF basis. Different Riemann fluxes have also
been tested, in particular Roe and Lax-Friedrichs (also called Ru-
sanov) solvers (Toro, 1999). These are arguably the most common
fluxes used in conjunction with high-order DG nowadays. More de-
tails about these computations and a complete discussion of results
can be found in (Moura et al., 2017). The main goal of that study
was to validate in actual 3D turbulent flows the criterion proposed
in (Moura et al., 2015b) to estimate DG’s resolution power, namely
the so-called “1% rule”. This rule differentiates wavenumber ranges
of negligible and significant dissipation for various polynomial or-
ders (recall Fig. 1) by assuming a threshold of 1% damping factor
per DOF crossed by travelling waves. From this threshold, one is
able to evaluate the wavenumber k1% beyond which numerical dif-
fusion becomes significant enough to induce a dissipation range on
the energy spectra of DG-uDNS. The concept is closely related to
that of eddy-resolving capability and (implicit) LES filter width.

A simple adaptation to the 1% rule is however needed from
1D to 3D settings, owing to how energy spectra are defined in 3D,
see (Moura et al., 2017) for more details. This essentially causes

the numerically-induced dissipation range of 3D spectra to begin
in between k1% and

√
3k1%. This adaptation worked very well for

Roe-based test cases and reasonably well for those cases based
on Lax-Friedrichs, as shown in Fig. 6. Note that the so-called
complete solvers (which treat all the eigenvalues of governing
equations’ system consistently) yielded results similar to Roe,
whereas incomplete ones performed like Lax-Friedrichs. The latter
displayed a delay in the onset of their dissipation range due to an
unphysical pile-up of small-scale energy seen as an “energy bump”
before the actual dissipation range. Also, they have less energy in
the intermediate scales when compared to Roe-based solutions,
causing Kolmogorov’s −5/3 slope to be followed over a reduced
wavenumber range at TGV’s dissipation peak (t ≈ 9).

Figure 6. Energy spectra of the inviscid TGV flow at t = 9 (dissi-
pation peak) and t = 18 for various Riemann solvers.

A visual comparison between the flow fields generated by Roe
and Lax-Friedrichs is given in Fig. 7, which clearly shows how en-
ergy bumps are connected to over-energetic small-scale spurious
structures. Energy bumps have also been observed in turbulence
computations when hyperviscosity is used in place of the regular
(2nd-order) diffusion operator (Lamorgese et al., 2005), and they
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Figure 7. Isosurfaces of pressure (left pair) and Q-criterion (right pair) comparing cases based on Roe (cleaner) and Lax-Friedrichs (noisier).
Results obtained with p = 3 and nel = 283 at t = 7. Only one-eighth of the domain is shown; isosurfaces coloured by height (z-coordinate).

are seen to grow when the hyperviscous exponent increases. This is
explained as a stronger bottleneck phenomenon (Falkovich, 1994)
taking place due to a sharper dissipative behaviour in wavenumber
space. Reduced energy levels prior to energy bumps have also been
observed in numerical experiments conducted with hyperviscosity
and result from an intense eddy viscosity-like mixing effect caused
by the over-energetic small scales (Frisch et al., 2008). We note
that the Lax-Friedrichs flux is also expected to yield a sharper dissi-
pation in Fourier space owing to its over-upwind bias at low Mach
numbers, as explained below.

The standard upwind conditions is best represented by Roe’s
formula, which employs a property jump term proportional to the
corresponding eigenvalues of the governing equations’ system. On
the other hand, the Lax-Friedrichs flux uses instead the eigenvalue
of maximum absolute value alone. In 1D, for example, the latter
solver replaces |u| with |u|+c in the momentum equations, where u
is the flow velocity and c is the speed of sound. This amounts to an
over-upwinding factor of β = (|u|+c)/|u|= 1+Mach−1, which in-
creases without bound as the Mach number is reduced. Fig. 8 illus-
trates DG’s dissipation eigencurve for three ratios β when p= 4. As
the Mach number decreases, a discontinuity appears on the curve.
Moreover, for case p = 4 shown, the magnitude of the discontinu-
ous variation increases about twelve times as Mach is reduced from
0.9 to 0.1. These results are to be contrasted with those obtained
with standard upwinding (Fig. 1) which represent Roe-type solvers
and do not depend on the Mach number.

An additional assessment of solution quality is made by the
so-called QR diagrams (Chong et al., 1990; Tsinober, 2009). These
will further illustrate how physical or unphysical DG-uDNS results
can be for the type of problem considered in this section. QR dia-
grams, cf. Fig. 9, consist of joint PDFs of the second (Q) and third
(R) invariants of the velocity gradient tensor for a given flow field
(Chong et al., 1990) and provide a statistical description of turbu-
lent kinematics. The teardrop-like profile shown for the Roe case
in Fig. 9 (top) is also observed in several different turbulent flows,
see e.g. (Laizet et al., 2015), and is regarded as one of the qualita-
tively universal characteristics of turbulence (Tsinober, 2009). On
the other hand, profiles obtained from Lax-Friedrichs computations
yielded a more symmetrical distribution of kinematic states, typi-
cal of artificially generated Gaussian turbulence (Chertkov et al.,
1999). This symmetric distribution is possibly associated to the en-
ergy bump discussed previously, as bump-related scales represent a
so-called thermalized state (Banerjee & Ray, 2014) where energy
equipartition is favoured (Frisch et al., 2008).

At this point, it is important to note that some of the TGV
test cases considered lacked numerical stability and “crashed”,
normally before the problem’s kinetic energy dissipation peak was
achieved (t ≈ 9). This happened especially at higher polynomial
orders (p ≥ 5), which is not surprising since high-order numerical
schemes (in general) usually have very low dissipation. However,
Roe-based computations crashed less often and, depending on

the grid, remained stable even at p = 8. Lax-Friedrichs, on the
other hand, offered less robustness and crashed for p ≥ 5 on all
grids tested. This is considered counter-intuitive since that latter
is usually regarded as more dissipative and hence more stable.
It is believed, therefore, that the observed instabilities are not
caused by insufficient dissipation, but by a sharper dissipative
behaviour in wavenumber space. Lax-Friedrichs does exacerbate
this behaviour due to its over-upwind bias at low Mach numbers,
but higher order discretizations also produce sharper dissipation
even at standard upwind conditions (Fig. 1). It so happens that
very sharp dissipation curves can induce a partial shift from a
dissipative to a conservative flow dynamics (Frisch et al., 2008;
Banerjee & Ray, 2014), whereby physical instabilities can arise
in the inviscid TGV flow, although the possibility of physical
TGV singularities leading to solution collapse is still under debate
(Brachet et al., 1992; Cichowlas & Brachet, 2005; Hou & Li, 2008).

Figure 8. Lax-Friedrichs’ dissipation curves for p = 4 and Mach
number 0.9 to 0.1 (top to bottom). Plot from (Moura et al., 2016a).
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Figure 9. QR diagrams at t = 9 (dissipation peak) obtained with Roe (left) and Lax-Friedrichs (right), from case p = 4, nel = 233. The dark
red colour has been assigned to values above 1/4. The white curve separates rotational states (above the curve) from those without rotation
(under the curve), cf. (Chong et al., 1990).

The lack of robustness for the higher-order discretisations has
been cautiously verified not to be related with time-step restric-
tions or polynomial aliasing errors. Typical CFL numbers (based
on the acoustic wave speed) were of the order of 10−1 and an
increased number of quadrature points (q = 2m per dimension)
has been employed in all the cases to ensure consistent integra-
tion of the cubic non-linearities of the compressible Euler equa-
tions. Tests conducted with particular cases to rule out these fac-
tors consistently showed the time of crash to be insensitive to
time-step reductions (down to CFL ≈ 10−2) or to a further in-
crease in the number of integration points (up to q = 4m). The
‘global dealiasing’ approach described in Mengaldo et al. (2015)
has been employed for the interior and boundary quadratures, where
over-integration is performed simply through a larger number of
(Gauss-Lobatto-Legendre) quadrature points. The unstable simu-
lations obtained highlight that DG-based uDNS approaches, even
with consistent /over-integration, might in fact require additional
stabilization techniques at very high Reynolds numbers so as to
more strongly enforce the entropy-consistent dissipative behaviour
of Navier-Stokes turbulence in the limit of zero viscosity.

Finally, a skew-symmetric (or split-form) DG formulation re-
cently proposed (Gassner et al., 2016) was able to stabilize all the
TGV test cases considered here and others, up to order 16th, with-
out significantly impacting DG’s resolution power (Winters et al.,
2017). Such approach is very robust and, when used with complete
Riemann solvers, a promising candidate for high-fidelity practical
applications. Further investigation is however still required for DG-
uDNS in different types of flows and especially for wall-bounded
turbulence.

CONCLUSIONS
This study investigated the suitability of high-order spectral el-

ement methods (SEM), in particular the continuous and discontin-
uous Galerkin methods (i.e. CG and DG), to under-resolved DNS
(uDNS) / implicit LES (iLES). Model problems in 1D, 2D and 3D
have been covered, each providing peculiar insight into the accu-
racy and stability of CG- or DG-based uDNS / iLES. Results ob-
tained from numerical experiments have been explained according
to linear dispersion-diffusion (eigen)analysis. One of the main in-
sights stemming from the eigenanalysis concerned the estimation
of DG’s resolution power or eddy-resolving capability. Numerical
results also demonstrated that DG approaches have superior robust-
ness due to their inherent upwind dissipation, whereas CG requires

added spectral vanishing viscosity (SVV) to remain stable at high
Reynolds numbers. A viable approach to design SVV operators
suited to under-resolved computations is to match SVV dissipation
levels to those of DG.

The results obtained with DG for the Taylor-Green vortex
(TGV) problem at infinite Reynolds number highlighted that, when
the effects of molecular viscosity are negligible, “complete” Rie-
mann solvers (such as Roe’s flux) and moderately high polyno-
mial orders should be favoured. This is to avoid unphysical re-
sults induced by very sharp dissipative behaviour in wavenumber
space, caused either by very high polynomial orders or by the over-
upwinding bias of more simplistic solvers (such as Lax-Friedrichs).
For spatially developing problems, using complete Riemann solvers
also helps to suppress spurious reflections (Hu & Atkins, 2002),
which is also expected to improve numerical stability (Mengaldo
et al., 2017).

A final requirement for robustness is the mitigation of polyno-
mial aliasing errors caused by insufficient quadratures (Mengaldo
et al., 2015). For CG, dealiasing is more easily performed due to
the reduced (quadratic) nonlinearity of the incompressible Navier-
Stokes equations (Kirby & Karniadakis, 2003). We note that CG
is almost exclusively used for incompressible flows, whereas dis-
continuous SEM are much more often employed for compressible
ones. As a result, dealiasing for DG is more involved and expen-
sive since the conservative form of the compressible Navier-Stokes
equations has rational terms which are hardly integrated exactly in
under-resolved scenarios. Although quadratures with an increased
number of integration points can be performed, these can be eventu-
ally ineffective in suppressing instabilities due to under-resolution
at very high Reynolds (as shown in the TGV cases discussed).

A recently proposed skew-symmetric (or split-form) DG dis-
cretization (Gassner et al., 2016) demonstrated remarkable numer-
ical stability by being able to stabilize inviscid TGV computations
even at very high order. This approach is a promising candidate
for high-fidelity uDNS / iLES of practical flows. Still, further in-
vestigation is required regarding the suitability of high-order SEM
for different types of transitional and turbulent flows, especially for
wall-bounded flows and complex geometries.
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analysis for the discontinuous Galerkin formulation. In Spectral
and High Order Methods for PDEs – ICOSAHOM 2014, pp.
375–383. Springer.

Moura, R. C., Mengaldo, G., Peiró, J. & Sherwin, S. J. 2017 On the
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