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Small Scale Anisotropy in Axisymmetric Turbulence
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ABSTRACT
We experimentally investigate the presence of anisotropy from

the inertial to the dissipative scales in homogeneous turbulence. We
employ an apparatus in which two facing arrays of randomly ac-
tuated air jets generate turbulence with negligible mean flow and
shear, over a volume several times larger than the energy-containing
eddy size. The Reynolds number based on the Taylor microscale is
varied in the range Reλ ≈ 300−500, while the axial-to-radial ratio
of the root mean square velocity fluctuations ranges between 1.37
and 1.72. Two velocity components are measured by particle image
velocimetry (PIV) capturing from the inertial to the Kolmogorov
scales and yielding statistics up to sixth order. The scaling expo-
nents of the velocity structure functions are found to differ not only
between the longitudinal and transverse components, but also be-
tween the axial and radial directions of separation. At the dissi-
pative scales, the moments of the velocity gradients indicate that
departure from isotropy is, at the present Reynolds numbers, signif-
icant and more pronounced for stronger large-scale anisotropy. The
structure-function based measures of isotropy tend towards isotropy
as the separation is reduced from the inertial to the near-dissipative
scales (down to about 10η , η being the Kolmogorov length) but
become more anisotropic for even smaller scales which are charac-
terized by high intermittency.

I. INTRODUCTION
Ever since Kolmogorov (1941) (K41 for brevity) a common

assumption in the study of turbulence is isotropic symmetry of
small scales (at sufficient Reynolds number). The postulate of lo-
cal isotropy and its implications have been scrutinized and debated
for decades. Browne et al. (1987) and George & Hussein (1991)
compiled some of the available results of laboratory studies up to
Reλ = 990, underscoring that the mean square derivatives of the
velocity fluctuations were not consistent with local isotropy. Sad-
doughi & Veeravalli (1994), with their landmark measurements in
the boundary layer of the NASA Ames wind tunnel at Reλ = 1450,
found significant support to local isotropy for statistics up to the
second order. Ouellette et al. (2006) used a double impeller appara-
tus to measure Lagrangian structure functions at Reλ = 815, finding
that large-scale asymmetries were reflected already in the second-
order statistics.

Local isotropy has been most often assumed in turbulence the-
ories and models, but exceptions have become more frequent in
the last decades. Durbin & Speziale (1991) argued on theoretical

grounds that the small scales cannot be isotropic in the presence
of a steady background strain, independently of the Reynolds num-
ber. Yeung & Brasseur (1991) performed low Reλ simulations in
triply periodic domains using asymmetric forcing, and showed that
the small scales are affected by large scale anisotropy as a conse-
quence of non-local triadic interactions in wavenumber space. As
these interactions are thought to become stronger with scale separa-
tion, they speculated that small-scale anisotropy would exist also at
asymptotically large Reynolds numbers. This idea found support in
later simulations at much higher Reynolds numbers (Mininni et al.,
2006).

In the following we present results of an experimental study
aimed to advance our understanding of turbulence anisotropy, from
the inertial to the dissipative scales, providing complementary in-
sights with respect to previous studies. To this end, PIV measure-
ments are carried out in a recently introduced facility that gener-
ates homogeneous, shearless, anisotropic turbulence in the range
Reλ = 298−496. The facility and PIV measurements are discussed
in §II., the results are presented in §III. and §IV., and conclusions
and future work are discussed in §V..

II. APPARATUS AND METHODOLOGY
ZERO-MEAN FLOW TURBULENCE CHAMBER

The experimental apparatus and instrumentation was presented
and qualified in Carter et al. (2016), and only a brief description will
be given here. The facility consists of a 5 m3 chamber in which full
optical access is provided by the acrylic walls and ceiling. Two
facing panels within the chamber accommodate arrays of 128 ports
each, fed by pressurized air at 700 kPa and controlled by solenoid
valves. The latter are individually actuated to fire quasi-synthetic air
jets in randomized sequence, according to the algorithm proposed
by Variano & Cowen (2008). The jet interaction produces turbu-
lence which is approximately homogeneous, with no mean shear
and negligible mean flow over a volume of ≈ 0.5 x 0.7 x 0.4 m3

at the centre of the chamber. A conceptual sketch of the chamber
is provided in figure 1; x1 indicates the direction parallel to the jet
axis, x2 and x3 are the transverse (vertical and horizontal, respec-
tively) directions. Given the jet array configuration we assume ax-
isymmetry about x1 (for example when calculating dissipation, see
§III). The Reynolds number can be adjusted by varying the average
firing time of the jets (µon), as increasing the latter results in an in-
crease of both the length scales and the rms velocity fluctuations.
Here we consider five cases with µon ranging between 100 ms and
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Figure 1. Illustration of the experimental setup.

3.2 s.
The facility is inspired by the jet-stirred water tank of Bellani

& Variano (2014), which produces isotropic turbulence at the large
scales. Here, on the other hand, significant large-scale anisotropy
is present, and indeed the resulting turbulent flow possesses several
features that make it especially well suited for investigating scale-
to-scale anisotropy. Firstly, the homogeneity allows neglecting the
effect of the spatial gradient of turbulent kinetic energy typical of
decaying grid turbulence (Maxey, 1987). Secondly, the lack of
mean shear allows investigating the anisotropy without the influence
of complex shear production mechanisms (Veeravalli & Warhaft,
1989; Mydlarski & Warhaft, 1996; Biferale & Toschi, 2001). In
the present system, as in other recently introduced devices featuring
planar jet arrays (Khorsandi et al., 2013; Bellani & Variano, 2014),
the large homogeneous region allows for the natural development
of the full energy cascade without the influence of mean shear or
strain. Finally, the lack of mean flow is beneficial for the measure-
ment accuracy.

VELOCITY MEASUREMENTS
PIV measurements are performed along the x1 − x2 symme-

try plane at the center of the chamber. The flow is seeded with 1-
2 µm DEHS (Di-Ethyl-Hexyl-Sebacate) droplets, illuminated by a
532 nm Nd:YAG laser, and imaged by a 4 megapixel CCD camera.
The laser pulse separation is chosen such that the particle displace-
ment is limited to 4-5 pixels to reduce out-of-plane loss of particles.
Velocity fields are processed using an iterative cross-correlation al-
gorithm, with final interrogation windows of 32 x 32 pixels and 50%
overlap. Measurements are obtained by mounting a Nikon lense of
200 mm focal length. This provides a field of view (FOV) small
enough to capture the dissipative scales of the flow (see table 1).
Spatial derivatives are calculated with a second-order central differ-
ence scheme, after applying on the velocity fields a Gaussian filter
with a kernel size matching the interrogation window size (Ganap-
athisubramani et al., 2007).

Table 1. Basic imaging parameters for the PIV measurements.

Focal length [mm] 200

Field of View [cm x cm] 3.3 x 3.3

Vector Spacing [mm (η)] 0.31 (1-1.5)

For the considered cases, the relation between Reλ and u′1/u′2
are reported in figure 2. We calculate large-scale quantities (e.g.
anisotropy ratio, integral scales) from a set of low-resolution/large-
FOV measurements obtained for the same experimental settings,
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Figure 2. Reynolds number based on the Taylor microscale plot-
ted versus anisotropy ratio.

while the small-scale quantities (turbulent dissipation and related
quantities) are based on high-resolution/small-FOV measurements.
The anisotropy ratios between both resolutions are confirmed to
agree within a few percent. For all cases the anisotropy ratio u′1/u′2
is significantly larger than 1 (u1, u2, and u3 are the fluctuating ve-
locity components in direction x1, x2, and x3, respectively, and the
prime denotes rms quantities). In the considered range of jet ar-
ray forcing parameters, increasing the average firing time of the
jets leads to both higher Reλ and larger u′1/u′2. This prevents us
from independently assessing the influence of both parameters on
the turbulence properties, but will not affect our main conclusions.
Because the relation between Reλ and u′1/u′2 is roughly linear (fig-
ure 2) in the following the various quantities will be plotted as a
function of Reynolds number, implying similar trends with large-
scale anisotropy.

III. DISSIPATIVE RANGE ANISOTROPY
A common strategy to test the postulate of local isotropy at the

dissipative scales is to evaluate moments of the velocity derivatives.
In particular, following the ansatz of Taylor (1935), several authors
have evaluated the ratios of the mean square velocity derivatives
along different directions and compared them against the expected
isotropic values (e.g. Browne et al., 1987; George & Hussein, 1991;
Tsinober et al., 1992; Shafi & Antonia, 1997; Burattini et al., 2010;
Gomes-Fernandes et al., 2012; Thiesset et al., 2013; Valente & Vas-
silicos, 2014). Here we consider the following ratios, which should
all be equal to one in isotropic turbulence:

K1 = 2〈a2
11〉/〈a2

21〉 (1)

K3 = 2〈a2
11〉/〈a2

12〉 (2)

K5 = 2〈a2
22〉/〈a2

12〉 (3)

K7 = 2〈a2
22〉/〈a2

21〉. (4)

where ai j = ∂ui/∂x j. The nomenclature changes among different
research groups; when possible we have followed the notation often
used by Antonia and coworkers. The following quantities are also
expected to be equal to one in K41:
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Figure 3. Small scale ratios for testing isotropy defined by equations (1) - (4) (a) and (5) - (7) (b). The dashed line in both panels indicates
the isotropic value of 1.

Kω3 =
5〈a2

11〉
〈ω2

3 〉
(5)

M12 =−
1
2
〈a2

11〉
〈a12a21〉

(6)

G1 =
3
2
〈a12a2

21〉
〈a3

11〉
(7)

where ω3 is here the out-of-plane vorticity component. We remark
that M12 = 1 only requires axisymmetry around the x1 axis. While
(1) to (6) are ratios of second-order moments, (7) is a third-order
quantity and therefore G1 = 1 may be expected to be a more strin-
gent isotropy test. The values reported in literature for these ratios
are fairly scattered, even for similar flow configurations. K1 (the
ratio reported most often) was found to be larger than one in most
previous studies of free shear flows (e.g. Browne et al., 1987; Hus-
sein, 1994, among others), turbulent boundary layers (Shafi & An-
tonia, 1997), and grid turbulence (Tsinober et al., 1992; Antonia
et al., 1998, among many others). K3 was found to be smaller than
one in various types of turbulent flows, although values larger than
one were also reported in jets (Hussein, 1994) and grid turbulence
(Gomes-Fernandes et al., 2012). K5 and K7 were found to be larger
than one in both wake flows (Browne et al., 1987) and grid turbu-
lence (Tsinober et al., 1992), with K7 typically larger than K5. Some
studies, e.g. Shafi & Antonia (1997), found Kω3 in general agree-
ment with isotropy, reflecting the fact that, in their measurements,
K1 > 1 and K3 < 1.

The ratios (1) to (7) for the present flow are plotted as a func-
tion of Reλ in figure 3. We remind that, in the present setup, increas-
ing Reλ implies increasing u′1/u′2. All Ki ratios are significantly
larger than one. The level of small-scale anisotropy suggested by
these values is significantly higher than what was found, e.g., by
Lavoie et al. (2007) who had an essentially isotropic flow at the
large scales. Among the Ki ratios, Kω3 is furthest from isotropy,
likely because here K1 and K3 are both larger than one. G1 is signifi-
cantly further from unity than the Ki ratios, which is expected being
the former a third-order quantity. M12 on the other hand is also dis-
tant from isotropy, despite the fact that M12 = 1 only requires small-
scale axisymmetry. All ratios depart from the isotropic value of one
with increasing Reλ , hence with increasing u′1/u′2. The increase in
Reynolds number is expected to promote the return to isotropy at the
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Figure 4. Normalized PDF of the logarithm of dissipation ε calcu-
lated under axisymmetric assumptions (black) and under isotropic
assumptions (grey) for the case Reλ = 476. A lognormal distribu-
tion is plotted for comparison (dashed.)

small scales, but apparently the influence of large-scale anisotropy
is strong enough to offset this tendency. This points to a direct link
between anisotropy at the energetic and dissipative scales.

The fact that M12 is significantly larger than one suggests cau-
tion in assuming axisymmetry, at least at the smallest scales. We
explore this issue by comparing the spatial distribution of local dis-
sipation calculated both using local isotropy (ε = 15ν〈a2

11〉, as in the
majority of studies relying on single-point velocity measurements)
and using local axisymmetry (George & Hussein, 1991):

ε = ν [−〈a2
11〉+2〈a2

12〉+2〈a2
21〉+8〈a2

22〉]. (8)

The refined similarity hypotheis (Kolmogorov, 1962) postu-
lates a log-normal distribution of ε to account for the internal in-
termittency of turbulence. Although some authors have pointed out
theoretical inconsistencies in this assumption (see Frisch, 1995), ev-
idence from the bulk of experimental and numerical studies in the
literature seems to support it (e.g. Wang et al., 1996; Chen et al.,
1997; Mullin & Dahm, 2006; Ganapathisubramani et al., 2008).
Figure 4 indicates that, while the dissipation calculated using ax-
isymmetry shows significant departure from log-normality for the
low ε values, it does approximate such behavior much more closely
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compared to the isotropic assumption.

IV. INERTIAL RANGE ANISOTROPY
To address the propagation of anisotropy through the inertial

scales we investigate the structure functions defined over separation
rrr:

Dn
ii(rrr) = 〈[ui(xxx+ rrr)−ui(xxx)]n〉 (9)

which in homogeneous flows is independent of the position vector
x. According to K41, for separations r j in the inertial range:

Dn
ii(r j) =Cn(εr j)

ζn . (10)

K41 further predicts ζn = n/3 and Cn being constant. We distin-
guish between the longitudinal structure functions (LSF), for which
the velocity component ui is parallel to the separation, and the trans-
verse structure function (TSF), for which ui is normal to it. In the
following we denote them as Dn

L and Dn
T , respectively. The inertial

range is classically identified as the separation interval over which
the third-order LSF scales linearly with r j (from ζ3 = 1). LSFs and
TSFs, and especially their scaling properties, have been explored
in many studies investigating scale-to-scale turbulence dynamics.
Unlike in most previous experiments using point-wise techniques,
PIV provides access to both LSF and TSF associated to displace-
ments along two directions: the axial direction x1 and the radial
direction x2. Therefore, we are able to investigate the four quanti-
ties Dn

L(r1) = Dn
11(r1), Dn

L(r2) = Dn
22(r2), Dn

T (r2) = Dn
11(r2), and

Dn
T (r1) =Dn

22(r1) which according to the postulate of local isotropy
should all have the same scaling behavior. This is explicitly tested
for in the following, along with other isotropic relations.

SCALING EXPONENTS OF N-TH ORDER STUC-
TURE FUNCTIONS

We consider the scaling exponents of the nth-order structure
functions. These have been investigated in depth in the past, espe-
cially as they relate to intermittency and the consequent anomalous
scaling, i.e. the departure from the K41 prediction ζn = n/3 (Ansel-
met et al., 1984; Siebert & Warhaft, 2010, among many others). The
scaling exponents have been studied extensively also in the context
of local isotropy, comparing the behavior of velocity differences in
different directions, but without reaching consensus on their trend.

Here we calculate LSF and TSF up to the sixth order, with sep-
arations along both axial (i.e. ζ

L,1
n , ζ

T,1
n ) and radial (ζ L,2

n , ζ
T,2
n )

directions. Premultiplied probability density functions for veloc-
ity separations from the smallest to the inertial scales were used
to confirm statistical convergence up to sixth order. We obtain the
scaling exponents following the extended self-similarity (ESS) ap-
proach proposed by Benzi et al. (1993). In ESS, the structure func-
tion of interest is plotted against a structure function of different
order, rather than against the physical separation. This significantly
extends the scaling range, partly because the sampling undulations
are generally correlated among structure functions of different or-
ders (Frisch, 1995). The procedure is particularly straightforward
when plotting against the third-order LSF, which works as a surro-
gate for the separation if one assumes ζ L

3 = 1. Moreover, to improve
statistical convergence of the odd order moments, it is customary to
consider structure functions of the absolute value of the velocity
difference, D|n|ii (r) = 〈|ui(x+ r)− ui(x)|n〉, which have marginally
different scaling with respect to Dn

ii (Benzi et al., 1993; Sreenivasan
et al., 1996).

The ESS-based scaling exponents for LSF and TSF (in both ax-
ial and radial directions) for cases Reλ = 298 and 476 are reported
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Figure 6. Structure function based measures of isotropy Ki(r) for
the case Reλ = 298.

in table 2. These are calculated over the range for which the loga-
rithmic relative slope of the third-order LSF to the absolute-valued
third-order LSF is equal to one within ∼4%. This corresponds to
separations in the approximate range 15η - 40η and varies slightly
depending on the case. The dominant uncertainties in the exponents
stem from the standard error of the slopes in the straight line fits and
the chosen bound on the ESS scaling range, as these are typically
much larger than the error due to measurement or statistical uncer-
tainty. In figure 5 the exponents are compared with the K41 scaling
ζn = n/3 and with the model of She & Leveque (1994). The latter
is an intermittency model that assumes a hierarchical distribution of
the energy dissipation rate and predicts:

ζn =
n
9
+2[1− (

2
3
)n/3]. (11)

The LSF scaling exponent measured with separation in the ax-
ial direction, which is the most commonly reported in literature,
appears remarkably close to the She & Leveque (1994) model, es-
pecially at the higher Reynolds numbers. In figure 5 the case at
Re= 476 is also compared with the benchmark experiments of Shen
& Warhaft (2002) (unsheared grid turbulence at Reλ = 863 and
u′1/u′2 = 1.71). The agreement in terms of ζ

L,1
n is excellent, seem-

ingly supporting the statement of Ishihara et al. (2009) that LSFs
show a universal behavior independent on the large-scale flow con-
ditions.
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Table 2. Scaling exponents of structure functions for two representative cases obtained using ESS (Benzi et al., 1993) with estimated uncer-
tainties in brackets.

Reλ = 298 , u′1/u′2 = 1.38 Reλ = 476 , u′1/u′2 = 1.72

n = 2 n = 3 n = 4 n = 5 n = 6 n = 2 n = 3 n = 4 n = 5 n = 6

ζ
L,1
n

0.69
[0.04]

0.98
[0.06]

1.28
[0.07]

1.53
[0.08]

1.77
[0.11]

0.70
[0.04]

1.00
[0.07]

1.28
[0.07]

1.54
[0.12]

1.77
[0.25]

ζ
L,2
n

0.67
[0.04]

0.96
[0.05]

1.22
[0.07]

1.44
[0.09]

1.63
[0.10]

0.69
[0.04]

0.98
[0.05]

1.25
[0.07]

1.47
[0.08]

1.64
[0.08]

ζ
T,1
n

0.57
[0.03]

0.79
[0.04]

0.97
[0.05]

1.11
[0.07]

1.22
[0.09]

0.59
[0.04]

0.81
[0.06]

0.98
[0.07]

1.11
[0.08]

1.19
[0.09]

ζ
T,2
n

0.60
[0.03]

0.84
[0.04]

1.04
[0.06]

1.21
[0.07]

1.37
[0.08]

0.61
[0.03]

0.84
[0.05]

1.04
[0.07]

1.20
[0.07]

1.34
[0.09]

Figure 5 also confirms that the TSF exponents are significantly
smaller than the LSF exponents, as consistently reported in the lit-
erature (Romano & Antonia, 2001; Ishihara et al., 2009, and refer-
ences therein). Our values of ζ

T,1
n are in fair agreement with those

of Shen & Warhaft (2002) and Zhou et al. (2001), whereas in the
DNS of Gotoh et al. (2002) the difference between the LSF and TSF
scaling exponents is much smaller. This indicates that significant
large-scale anisotropy (absent in the DNS) crucially contributes to
the inequality ζ T

n < ζ L
n .

STRUCTURE FUNCTION BASED ISOTROPY MEA-
SURES

In order to investigate the scale-to-scale isotropy, we utilize the
same measures of isotropy in equations (1)-(4) using the appropriate
structure functions, e.g.

K1(rrr) =
2D2

L(r1)

D2
T (r1)

(12)

where K3(rrr), K5(rrr) and K7(rrr) are calculated analogously. The
structure function based measures of isotropy are plotted in figure
6. The shape of the Ki(r) functions appear to support the return
to isotropy from r/η ∼ 150 down to O(10η), beyond which all
measures show a departure from isotropy down to vanishing sepa-
ration distance. This is believed to be a manifestation of dissipative-
range intermittency (as opposed to inertial-range intermittency) as
was discussed in detail by Chevillard et al. (2005). Dissipation-
range intermittency has received much attention following the sem-
inal observation of Kraichnan (1967) that any local variation of the
dissipation rate produces the strongest fluctuations at the highest
wavenumbers of the turbulence spectrum. It is noted that for in-
creasing anisotropy ratio (and therefore also increasing Reλ ) the
departure from isotropy is more pronounced (as was noted in §III.)
This points to the influence of greater large scale anisotropy out-
weighing the influence of greater separation of scales.

V. CONCLUSIONS
Taken together, these results highlight the importance of con-

sidering, for a full characterization of all scales of the turbulence,
not only the different velocity components but also the different
spatial directions. A limitation of the present work is represented
by the fact that the Reynolds number and the large-scale anisotropy
cannot be varied independently in our apparatus, preventing firm

conclusions on the respective quantitative influences of both pa-
rameters. Experimental facilities capable of disentangling the two
effects, such as the turbulence chamber of Chang et al. (2012), are
invaluable in this sense. We also remark the importance, in order
to explore truly homogeneous turbulence, of generating a homo-
geneous region much larger than the integral scale. This has been
achieved in the present set up at the cost of building a chamber of
considerable size.

As it has been noted by several authors, anisotropy is deeply in-
terrelated to intermittency at all scales (see, for e.g. Warhaft, 2009).
The details of this relation, however, remain relatively unexplored.
The present results suggest that intermittency models able to ac-
count for anisotropy, even implicitly, may stand a better chance of
reproducing the observations. For example, the physical picture
associated to the model of She & Leveque (1994) features small
filamentary structures which are responsible for intermittency and
dissipate energy at a rate constructed from a small-scale time and
a large-scale velocity. Such a mixed scaling naturally opens up to
incorporating large-scale anisotropy. In the present work we have
not directly addressed the topology of the turbulent structures, nor
the energy transfer among scales - aspects which are connected to
the emergence of intermittency and the propagation of anisotropy,
and which will be explored in a future study.
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