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ABSTRACT
Scalar mixing is investigated in a decelerating turbulent round

jet using direct numerical simulation. The mass fraction of jet fluid
and the fluid residence time, measured by the mass-weighted age of
the jet fluid, both exhibit self-similar radial profiles in statistically-
stationary turbulent jets. Upon stopping the inflow, a deceleration
wave passes through the jet, behind which a new self-similar state
is observed for the two scalar variables. The self-similar state dur-
ing the jet deceleration is different from that in the statistically-
stationary jet. Opposite to its behaviour in the steady-state jet,
the jet fluid mass fraction exhibits a linear increase with down-
stream distance in the decelerating jet, whereas the centreline mass-
weighted age of jet fluid remains proportional to downstream dis-
tance. The dynamics of the scalar mixing in the transient self-
similar state are discussed through analysis of the scalar transport
budgets.

Introduction
Mixing processes in unsteady jets are relevant to a wide range

of environmental, biological and industrial systems. Modulation of
the jet flow rate affects the dynamics of mixing between the jet fluid
and the ambient fluid, controlling both the overall rate of mixing and
the spatial distribution of the mass fraction of the jet fluid over time.
In addition to the jet fluid mass fraction distribution, the residence
time of the jet fluid is relevant in many applications since the extent
to which chemical, physical, or biological processes progress within
a given system depends upon the residence time of the jet fluid.

Fuel injection in diesel engines is one important example where
modulation of the fuel injection rate strongly affects the system per-
formance in terms of heat release rate and pollution production:
excessive mixing at the end of fuel injection can lead to incom-
plete combustion and to increased hydrocarbon emissions; whereas
inadequate mixing can also increase emission of particulate mat-
ter. Due to the difficulties of in-cylinder measurements and high-
fidelity simulations of mixing and reaction processes in combustion
engines, sound fundamental understanding of the effects of jet flow
rate modulation on mixing dynamics is essential to the design pro-
cess of compression-ignition engines. In that context, recent devel-
opment of one-dimensional modelling for fuel jet dynamics (Knox
& Genzale, 2016; Desantes et al., 2009; Pastor et al., 2015) has
provided valuable insight concerning the influence of the injection
profile on flow, mixing and chemical dynamics in diesel engines.
These one-dimensional models effectively employ an assumption

Figure 1. The scaled axial velocities along the centreline over time
at different downstream locations, measured by Witze (1983). The
air was injected between t ≈ 0.5−4.5ms.

that the velocity and jet fluid mass fraction exhibit a self-similar be-
haviour even during injection transients. However there is a lack of
direct evidence for the occurrence of self-similarity of scalar fields
during injection transients, and a lack of information concerning the
form that such self-similarity takes.

A previous numerical study revealed that when a jet is stopped
from a steady state, all the velocity components become self-
similar, and the centreline streamwise velocity (ūc) satisfies the fol-
lowing relationship with a constant Cu (Shin et al., 2017a).

ūc =Cu
x− x0

t− t0
, (1)

where x0 and t0 are virtual space and time origins. This scaling be-
haviour agrees well with the experimental measurements of Witze
(1983): Figure 1 shows that after the injection is stopped at around
4.5ms, the inverse of scaled centreline velocities at different loca-
tions collapse onto a single straight line. This generic scaling is also
identified by previous studies including Scase et al. (2006), Muscu-
lus (2009) and Craske & van Reeuwijk (2015).

The distribution of the jet fluid residence time provides addi-
tional information that may be used to enhance modelling of chem-
ical processes, for example in one-dimensional models for diesel
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Figure 2. Cross-sectional colour maps of the instantaneous jet
fluid mass fraction at t/τ = 1,11 and 21 following stopping of the
jet at t/τ = 0.

jets. Shin et al. (2017b) showed the residence time distribution of
fluid from the jet stream is statistically-stationary and that radial
profiles of jet fluid residence time are self-similar downstream of
a development region (Shin et al., 2017b). The objective of this
study is to investigate the existence and nature of self-similarity of
the jet fluid mass fraction and the jet fluid residence time following
stopping of a turbulent jet.

Simulation Set-up
The simulation configuration consists of a turbulent round jet

issuing from a flat plate with jet Reynolds number 7 290 and Mach
number 0.304. A statistically-stationary flow is established (Shin
et al., 2017b), and then the inlet velocity is set to zero abruptly
at t = 0. The simulation runs until 69τ (τ = D/U0), where U0 is
the bulk velocity and D is the jet inlet diameter. Four statistically-
independent realisations of the flow are simulated.

The simulation is performed with the compressible DNS code,
HiPSTAR, developed at the University of Southampton (Sandberg
& Tester, 2016). The simulation runs on a stretched cylindri-
cal structured grid, with axial extent x/D = 60 and radial extent
r/D = 30. Fourth-order finite differencing is used for the stream-
wise and radial directions, and the spectral method is used for the
circumferential direction.

The radial and downstream boundaries use Navier-Stokes
Characteristic Boundary Conditions with buffer layers (Poinsot &
Lele, 1992). All scalar diffusivities (D) are set by assuming Lewis
numbers equal to unity, and a Prandtl number equal to 0.72. Viscos-
ity changes with temperature following Sutherland’s Law Suther-
land (1893). Figure 2 shows snapshots of mass fraction of jet fluid
at t/τ = 1,11, and 21.

In addition to the flow equations, two passive scalar transport
equations are solved. The mass fraction of jet fluid (Z) and the
‘stream age’ of fluid material originating from the jet stream (a j) are
governed by the following equations (Ghirelli & Leckner, 2004):

∂Z
∂ t

+~u ·∇Z =
1
ρ

∇ · (ρD j∇Z), (2)

∂ (Za j)

∂ t
+~u ·∇(Za j) =

1
ρ

∇ · (ρD j∇(Za j))+Z, (3)

where D j is the mass diffusivity of the jet fluid. The product of
mass fraction and stream age, Φ = Za j is referred to as the mass-
weighted stream age (Shin et al., 2017b). The equation for mass-

weighted stream age is used in preference to the equation for stream
age since the stream age is not defined in the limit Z→ 0.

Theoretical Analysis
Self-similarity of scalar profiles within a decelerating jet im-

plies a particular form for the centreline variation of the statistics
of the scalar variables as well as certain relationships between vari-
ables. Before analysing the numerical results, we provide a theoret-
ical analysis in order to set out key predictions that follow from an
assumption of self-similar scalar profiles in the unsteady jet. The
analysis begins by recasting Eqs. 2 and 3 into cylindrical coordi-
nates, neglecting diffusion terms and ensemble averaging:

∂ Z̄
∂ t

+ ū
∂ Z̄
∂x

+ v̄
∂ Z̄
∂ r

=−1
r

∂ rv′Z′

∂ r
− ∂u′Z′

∂x
(4)

∂ Φ̄

∂ t
+ ū

∂ Φ̄

∂x
+ v̄

∂ Φ̄

∂ r
=−1

r
∂ rv′Φ′

∂ r
− ∂u′Φ′

∂x
+ Z̄, (5)

where (.) denotes ensemble averaging.
The assumption of transient self-similarity for axial (u) and ra-

dial (v) velocities and all scalar variables can be expressed as fol-
lows:

ū = ūc(x, t) fu(η), v̄ = ūc(x, t) fv(η),

Z̄ = Z̄c(x, t) fZ(η), Φ̄ = Φ̄c(x, t) fΦ(η),

u′Z′ = ūc(x, t)Z̄c(x, t) fuZ(η), v′Z′ = ūc(x, t)Z̄c(x, t) fvZ(η),

u′Φ′ = ūc(x, t)Φ̄c(x, t) fuΦ(η),v′Φ′ = ūc(x, t)Φ̄c(x, t) fvΦ(η),

(6)

where η = r/x and fi represents the shape function for each variable
i.

Mathematical manipulation (omitted for brevity) shows that
the assumptions in Eq. 6 demand that Zc must be in the form

Zc =CZxα tβ , (7)

where CZ , α and β are constants. The two constants, α and β

are not yet determined. Assuming that the mass fraction behaves
similarly to the axial velocity, the constants corresponding to Eq.
1 are α = 1 and β = −1. With these parameters, the centreline
evolution of the two scalars is given by:

Zc =CZ
x− x0

t− t0
, (8)

Φc =CΦ(x− x0), (9)

where CΦ is a constant. Substituting Eqs. 1, 6, 8, and 9 into Eqs. 4
and 5, and normalising by Cux/t2 and Cux/t respectively, the gov-
erning equations are expressed in terms of η as follows:

− 1
Cu

fZ + fu fZ−η fu
d fZ
dη

+ fv
d fZ
dη

=−
[

fvZ

η
+

d fvZ

dη

]
−
[

2 fuZ−η
d fuZ

dη

]
,

(10)

fu fΦ−η fu
d fΦ
dη

+ fv
d fΦ
dη

=−
[

fvΦ

η
+

d fvΦ

dη

]
−
[

2 fuΦ−η
d fuΦ

dη

]
+

CZ

CuCΦ

fZ ,
(11)
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Figure 3. (a) Time evolution of the mass fraction of jet fluid along
the centreline (Z̄c), and (b) the scaled mass fraction of jet fluid along
the centreline (Z̄c(t− t0)/(x− x0)) at selected locations over time.

which reduces the original partial differential equations into ordi-
nary differential equations in η .

Evaluating Eqs. 10 and 11 at η = 0 leads:

[
d fvZ

dη

]
η=0

=
1

2Cu
− 1

2
− fuZ(0), (12)[

d fvΦ

dη

]
η=0

=
CZ

2CuCΦ

− 1
2
− fuΦ(0), (13)

which provides simple relationships for the slopes of fvZ and fvΦ at
η = 0.

Results
Centreline variation

The DNS data is used to investigate how the centreline profiles
vary in the decelerating jet and to assess the validity of Eqs. 8 and 9.
Figure 3a shows instantaneous profiles of jet fluid mass fraction (Zc)
along the centreline. For reference, the averaged steady-state profile
is added as a thick solid line. The transient behaviour of Zc is very
similar to the centreline axial velocity (Shin et al., 2017a). Once
the jet inflow is arrested, a deceleration wave travels downstream at
close to the local centreline velocity (Musculus, 2009; Shin et al.,
2017a; Scase et al., 2006). Upstream of the deceleration wave the
jet fluid mass fraction decays over time and develops a linear de-
pendence on x with the gradient decreasing in time, in accordance
with Eq. 8. Downstream of the deceleration wave the flow field
and scalar profiles are yet to be affected by the deceleration, and
resemble the profiles in the steady-state jet.

Figure 4. (a) Time evolution of the mass-weighted stream age of
jet fluid along the centerline (Φc) , and (b) the scaled mass-weighted
stream age of jet fluid (Φc/(x−x0)) at selected locations over time.

To further validate the scaling in Eq. 8, the scaled Zc is plot-
ted in Figure 3b. For consistency with previous work Shin et al.
(2017a), the virtual origin x0 and reference time t0 are obtained re-
spectively by fitting the steady-state axial velocity profile and by
fitting Eq. 1 against the data for ūc in the decelerating jet. The fig-
ure shows that the scaled Zc asymptotes to a constant after a tran-
sition period. Due to the finite speed of the deceleration wave, the
transition period increases with the axial position. This asymptotic
behaviour confirms the agreement with Eq. 8, and the asymptotic
constant, CZ , is found to be approximately 0.41.

Next, Figure 4a shows profiles of the instantaneous mass-
weighted species age of jet fluid (Φc) along the centreline, and the
ensemble average of Φc from the steady-state jet simulation (Shin
et al., 2017b). In contrast with the behaviour of Zc, the Φc profile
changes relatively little as the jet decelerates. As the deceleration
wave passes through the jet, Φc transitions from an initial linear
dependence on axial location in the steady-state jet to a different
time-independent linear profile with a slightly greater gradient. This
behaviour is consistent with Eq. 9. Figure 4b shows the scaled Φc
over time at multiple downstream locations. Using the same virtual
origin x0 in the scaling, the figure shows that the scaled Φc asymp-
totes towards 0.73 after the deceleration wave passes.

The asymptotic behaviour of the scaled centreline values
shown in Figures 3b and 4b agrees with Eqs. 8 and 9, indicating
that the DNS data are consistent with the self-similar assumptions
underpinning Eqs. 8 and 9.
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Figure 5. Time evolutions of the radial profiles of (a) the scaled mass fraction of jet fluid (Z) at x/D = 15, and (b) the scaled mass-weighted
stream age of jet fluid (Φ) at x/D = 15.

Self-similar radial profiles
The evolution of the radial profiles of Z̄ and Φ̄ during the de-

celeration transient is shown for x/D = 15 in Fig. 5a and b respec-
tively. The figures show an ensemble average of the profiles in the
initial steady-state jet, instantaneous profiles during the jet deceler-
ation, and an average of profiles during the period t/τ = 50− 69.
The time range t/τ = 50− 69 refers to a period after the passage
of the deceleration wave once the centreline velocity, mass fraction
and mass-weighted stream age evolve according to Eqs. 1, 8 and 9
(Shin et al., 2017a). Z̄ and Φ̄ are normalised by smoothed centre-
line values, with the smoothed centreline values obtained by fitting
a sixth-order polynomial to the data.

Figure 5a shows that the radial profile of Z̄ evolves from the
steady-state jet profile towards a new time-independent profile fol-
lowing the passage of the deceleration wave. The profile in the de-
celerating jet is similar to, but slightly wider than, the profile in the
steady-state jet. The difference between the steady-state profile and
the profile in the decelerating jet is similar to the difference in the
axial-velocity profile (Borée et al., 1996; Shin et al., 2017a). The
radial profile of Φ̄ also transitions from its steady-state jet profile to
a new time-independent profile. In contrast with the jet fluid mass
fraction profile, the profile of Φ̄ becomes narrower during the de-
celeration wave.

While the transient profiles and the steady-state profiles of the
passive scalars are not identical to each other, they are quite simi-
lar. Therefore, for some purposes, it may be justifiable to assume
that the steady-state profile does not change during the deceleration
wave. For example, Musculus (2009) obtained good predictions of
the axial velocity evolution in a decelerating transient turbulent jet
by assuming a constant self-similar velocity profile.

The same transition to time-independent radial profiles of Z/Zc
and Φ/Φc in the decelerating jet is observed for x-locations down-
stream of a development region, x/D > 12.5 (not shown). Further-
more, the radial profiles of Z/Zc and Φ/Φc in the decelerating jet
are independent of axial location – implying that the radial profiles
in the decelerating jet achieve a new self-similar state after the tran-
sit of the deceleration wave. This self-similarity is evident in the
axial region for which the jet is fully-developed and for which suf-
ficiently statistically-converged data are available (12.5¡x/D < 20).

Figures 6a-d show the profiles of the turbulent transport terms
arising in the averaged scalar transport equations, Eqs. 4 and 5.
Each figure shows the initial self-similar profiles in the steady-state
jet and the new self-similar profile given by averaging data over
x/D = 12.5− 20 and t/τ = 50− 69, as well as showing the stan-
dard deviation in the data from the decelerating jet. Although not

shown, Z/Zc and Φ/Φc have very narrow standard deviations when
averaged in this way, indicating that profiles in the decelerating jet
are self-similar with respect to time and axial location. However, a
larger standard deviation is expected for the terms involving second
moments.

Figure 6a shows the radial profiles of u′Z′. Both profiles have
similar centreline values (η = 0): u′Z′ = 0.01 for steady-state and
0.013 for the decelerating jet. The peak occurs at different loca-
tions: η = 0.06 for the steady-state and 0.13 for the unsteady. Then,
both drop to zero at the same η location, indicating the jet width
does not change during the deceleration.

The v′Z′ profiles are shown in Figure 6c. The peak locations
are slightly different (η = 0.07 for the steady-state and η = 0.10 for
the decelerating jet), however the difference in locations of the peak
follows a similar trend as for u′Z′. To further assess the validity of
the self-similar assumption, the v′Z′ gradient at η = 0 predicted by
Eq. 12 is plotted. Considering Cu = 0.455 and fuZ(0) = 0.013, the
theoretical analysis in Eq. 12 predicts the slope of v′Z′ to be 0.584,
which agrees well with the simulation data.

Figure 6b shows the u′Φ′ profiles. Interestingly, the decelerat-
ing jet profiles for u′Z′ and u′Φ′ have the same shape, whereas their
steady-state jet counterparts are different. This may be because the
fluctuation a′j becomes relatively small, so that Φ′ is dominated the
Z′ fluctuation. The centreline value of the u′Φ′ in the decelerating
jet has a non-zero value, whereas it is zero in the steady-state jet.
However the difference may not be statistically significant consid-
ering the standard deviation in the data.

Figure 6d shows the v′Φ′ profiles. The peak locations are quite
close each other: η = 0.145 for steady-state and η = 0.13 for the
unsteady. The closeness of the peak location is similar to u′Φ′ pro-
files.In the Theoretical Analysis section the initial slope is predicted
by Eq. 13. Given the constants of Cu = 0.455, CZ = 0.41, and
CΦ = 0.73, the slope is expected to be 0.12 (red dashed line). How-
ever, this prediction does not agree with the numerical data. This
discrepancy may be due to a not-fully converged value for CΦ. As
seen from Figure 4b, the scaled Φc continues to decrease gradually.
If CΦ is set to be 0.51 instead of 0.73, the slope matches better.
Also, the large standard deviation in the data prevents an accurate
comparison.

Scalar transport budgets
Once all the necessary self-similar profiles have been evalu-

ated, all terms in Eqs. 4 and 5 can be evaluated to compare their
relative contributions and to examine effect of the approximations
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Figure 6. Self-similar radial profiles for a decelerating jet of (a) u′Z′, (b) u′Φ′, (c) v′Z′, (d) v′Φ′. Each figure contains: the unsteady self-
similar profile in a thick blue line with the shade of standard deviation; a corresponding steady-state profile in a black solid line and; theoretical
predictions in dashed lines if possible.

in Eqs. 4 and 5.
Figures 7a-d show the budget terms of the scalar transport

equations Eqs. 4 and 5 for both the steady-state and the deceler-
ating jet (based on data from x/D = 12.5−20 and t/τ = 50−69).
All the terms are scaled in order to be expressed in terms of η –
for example giving Eqs. 10 and 11 are for unsteady conditions. In
addition, for ease of comparison, all values are re-scaled in a way
such that the axial transport term (u∂ ()/∂x) has unity magnitude at
η = 0.

The Z-budget terms for the decelerating jet are shown in 7a.
Four terms are significant: axial transport, radial transport, radial
turbulent transport, and temporal terms. The temporal term makes
the biggest contribution. When compared with the steady-state jet
data shown in Figure 7b, the axial transport and the radial turbulent
transport terms have a similar order of magnitude in the the steady-
state and the decelerating jets. The axial transport terms are positive
for unsteady while negative for steady-state because of the different
x-dependency of Z̄. Interestingly, the radial transport term becomes
larger, relative to the steady-state jet. This is because the normalised
radial velocity (i.e. the entrainment) becomes around three time
larger in the decelerating jet (Shin et al., 2017a). The balance term
slightly deviates from zero, and this may be due to incompletely
converged averaging.

Figure 7c shows the budget-terms of Φ for the decelerating jet.
Four terms are important: axial transport, radial transport, radial
turbulent, and the source term (−Z̄). The source term in Eq. 11 is
evaluated assuming CΦ = 0.51.The value of CΦ = 0.51 is chosen in
order to match the slope of v′Φ′ at η = 0 in Fig. 6d. If CΦ = 0.73 is
used instead, the source term (−Z̄) would be smaller in magnitude

by a factor of 1.43, and the balance term is more positive accord-
ingly. No other terms are affected by the choice of CΦ. When com-
pared with the steady-state condition in Figure 7d, axial transport
terms are quite similar, while the radial turbulent term magnitude
increases due to the greater entrainment in the decelerating jet.

The analysis of the scalar transport budgets shows that the ra-
dial convection term becomes significant in the decelerating jet due
to the three-fold increase in entrainment. The unsteady term is the
leading order term in the Z budget in the decelerating jet, whereas
it is negligible (part of the Balance) in the Φ budget. The near-zero
balances in both cases indicate that the reduced ordinary differential
equations in Eqs. 10 and 11 are valid, although uncertainty concern-
ing the value of CΦ needs to be resolved.

CONCLUSION
Scalar mixing is investigated in a decelerating turbulent round

jet using direct numerical simulation. It is found that the mass
fraction of jet fluid and the mass-weighted stream age of the jet
fluid both exhibit self-similar radial profiles in the decelerating jet
as well as in the statistically-stationary jet. The self-similar pro-
files of the averaged scalar variables differ between the steady-state
and decelerating jets, however the differences are relatively small
and it might be a reasonable approximation to use radial profiles
from steady-state jets in some modelling applications. A deceler-
ation wave passes through the flow as the jet decelerates. Behind
the deceleration wave the jet fluid mass fraction exhibits a linear
increase with downstream distance, opposite to the mass fraction
dependence in the steady-state jet. In contrast, the centreline profile
of mass-weighted stream age remains proportional to downstream
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Figure 7. Budget terms of (a) mass fraction of jet fluid (Z) of unsteady, (b) Z of steady-state, (c) mass-weighted stream age of jet fluid (Φ) of
unsteady, and (d) Φ of steady-state,

distance, with a slight change of the gradient, and becomes inde-
pendent of time. The assumption of transient self-similarity of the
scalar fields in the decelerating jet leads to theoretical predictions
concerning the form of the turbulent scalar fluxes, and these predic-
tions are consistent with the simulation data – providing further ev-
idence for self-similarity of the scalar fields in the decelerating jet.
The transport budgets for the averaged jet fluid mass fraction and
mass-weighted stream age show marked differences in the deceler-
ating jet, compared to the steady-state jet. In particular the entrain-
ment is around three times greater in the decelerating jet, promoting
the importance of radial convection. Remarkably, the unsteady term
is negligible in the mass-weighted stream age budget in the deceler-
ating jet, so that the averaged mass-weighted stream age distribution
returns to a statistically stationary state after the deceleration wave
has passed, even though the flow continues to decelerate.
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