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ABSTRACT
The paper presents an extension of the Turbulent Spot method

which enables to obey the continuity of the fluctuations while pro-
ducing arbitrarily high anisotropy at the same time. The derivation
of the structures is summarized and expressions for their Reynolds
stresses and length scales are presented. Finally, the newly derived
structures are applied to a turbulent channel flow simulation and
compared with other means of turbulence synthesis.

INTRODUCTION
In many engineering problems, accuracy of the Reynolds av-

eraged Navier Stokes (RANS) simulations is not sufficient and a
more detailed information on the properties of turbulence are re-
quired than these which RANS solution provides. A possible rem-
edy is to employ scale resolving techniques like Direct Numerical
Simulation (DNS) or Large Eddy Simulation (LES). While DNS
still remains out of reach, LES has become a viable option even for
industrial users due to constantly increasing power of modern com-
puters. In this context, an important development during the last
decades are hybrid RANS/LES methods which extend the applica-
bility of scale resolving methods far towards high Reynolds number
flows by excluding the expensive near-wall region from LES and
applying unsteady RANS there.

The domain in a flow simulation is always bounded by in- and
outlets. Proper boundary conditions at these boundaries have to be
prescribed in a CFD simulation of the flow device, especially at the
inlet. In common engineering practice, the flow through the inlet is
already turbulent. In RANS context, mean quantities and integral
properties of the turbulent fluctuations then have to be prescribed.
In contrast, scale resolving simulation techniques gain their advan-
tage by directly including the turbulent fluctuation velocities in the
solved velocity field. Thus, the turbulent content at inlet boundaries
has to be explicitly prescribed in terms of an unsteady velocity field.

Formulation of the inlet condition is a well-recognized topic
in LES and DNS research. Overview of existing methods can be
found e.g. in Tabor & Baba-Ahmedi (2010); Schlüter et al. (2004);
Klein et al. (2003); Keating et al. (2004); Schmidt & Breuer (2015);
Pamies et al. (2009). According to Schlüter et al. Schlüter et al.
(2004) the methods for specification of turbulent inlet conditions
utilize one of four following techniques:

1. natural laminar turbulent transition,
2. random uncorrelated oscillations,
3. LES or DNS auxiliary simulation with periodic boundary con-

ditions in a domain in front of the area of interest,
4. synthetic turbulent fields.

First two techniques are nowadays not used because the first
one requires huge computational resources whereas the second one
generates uncorrelated fields which quickly dissipate behind the in-
let.

The third approach is widely used for flows with any domi-
nating flow direction. In many cases, when the flow domain is a
continuation of pipe or channel flows, the use of periodic boundary
conditions in auxiliary domain is the most efficient way to generate
inlet conditions. For flows with change of averaged parameters in
auxiliary simulation domain, such as, for instance, boundary layers,
Spalart proposed the recycling method Spalart (1988). In this case
the modified periodic boundary conditions are enforced in which
the data from outlet to inlet are copied with some rescaling factor.
Extension of this technique to three dimensional flows is quite dif-
ficult because the recycling direction is hard to detect. A proper
development of perturbations in auxiliary domain requires a certain
length. To reduce this length, a special forcing within the auxiliary
domain is introduced in A. & J. (2001) and Pierce & Moin (1998).
The forcing term is added as an additional body force to control
the integral parameters of the boundary layer evolving in the aux-
iliary domain. The biggest weakness of the third approach is the
complexity of its application for arbitrary geometries.

Within the last approach the turbulence is artificially generated
without solution of flow equations. The task is to synthesize a tur-
bulent velocity field U(x, t):

U(x, t) = U(x)+u(x, t) (1)

where U(x) is the mean velocity which is supposed to be known.
The fluctuations u need to have a number of properties, which we,
according to our experience, list below in the order of their impor-
tance:

1. u should be spatially and temporally correlated.
2. They have to possess prescribed Reynolds stresses Ri j =

uiu j(x).
3. Additionally to the requirement 1, u has to possess prescribed

integral lengths Li j(x,eη ) =
∞∫
0

ρi j(x,ηeη )dη .

4. u should fulfill the continuity constraint ∇ ·u = 0.
5. Additionally to the requirements 1 and 3, u should have pre-

scribed correlation functions ri j(x,η) =
ui(x,t)u j(x+η ,t)

ui(x,t)u j(x,t)
or pre-

scribed spectra.

Artificial turbulence always needs a certain distance (adaption
distance) to evolve into real turbulence. Violation of these require-
ments can lead to an extension of adaption distance.

The requirement 4 is especially important for applications
where a volumetric oscillation field is necessary. For the plane inlet,
the derivative perpendicular to the inlet can make sense by utiliza-
tion of the Taylor hypothesis. It is assumed that the inlet is far from
the area of strong flow change and the turbulence can be consid-
ered as a frozen one close to the inlet. Our experience shows that
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the violation of req. 4 can lead to a weak convergence of the itera-
tive process for solution of the flow equations or artificial pressure
fluctuations (i.e. noise) in the flow domain. Usually, in existing
methods only the requirements 1 and 2 are satisfied. To fulfill the
req. 5, either the correlation function or spectrum should be spec-
ified which are usually not available for complex flows. The con-
dition 3 thus represents a relaxed constraint where not the shape of
correlation function needs to be known but only its integral.

The current work deals with a method for turbulence synthesis
with the special focus on fulfillment of the continuity constraint by
retaining arbitrary anisotropy in the Reynolds stresses. We propose
the extension of the turbulent spot method based on exact mathe-
matical solutions which fulfills the requirements 1-4. In the next
section we briefly outline the mathematical basis of the method.

TURBULENT SPOT METHOD
Non-solenoidal version of the method

The initial version of the method has been developed and pub-
lished in 2003 for inhomogeneous non-solenoidal turbulent fields
Kornev & Hassel (2003). The starting point for the development
of the turbulent spots (TS) method were works in which turbulence
was simulated by a set of stochastically distributed vortex struc-
tures.

The turbulent field in TS method was represented as a set of
N compact spots with an inner primary velocity distribution with
components vi

n(r− ri) = ε i
n fn(r− ri), where n is the component

number, ri is the spot center, ε i
n is a random number, uniformly

distributed between −1 and 1, and i = 1,N. The velocity fluctua-
tion at any point r is equal to the sum of contributions of all spots

v =
N
∑

i=1
vi(r− ri). The stochastic behavior of the velocity field is

provided by stochastic distribution of the spots centers in space and
random choice of the vector ε i. If the velocity field v moves through
any inlet surface, which is not necessary plain, with the unit veloc-
ity W1 = 1 in, say, x1 direction, the x1 coordinate becomes equal
to time, x1 = Wt. This is an application of the Taylor hypothe-
sis often used in the turbulence research. If the signs of compo-
nents of the vector ε i are chosen statistically independently, then all
one-point correlations, calculated at any fixed observation point at

the inlet, satisfy the condition vnvk = δnk
N
∑

i=1
vi

nvi
k, where overline

stands for the time averaging. If a spot has a compact non zero
support, the field v is spatially (and temporally) correlated since

two point correlations vn(r)vk(r+η) = δnk
N
∑

i=1
vi

n(r)vi
k(r+η) are

not zero. Therefore, it is possible to generate the field with speci-
fied spectra (or autocorrelation function) and integral length. In this
form the TS method is theoretically identical to the Synthetic Eddy
Method which appeared later in Jarrin et al. (2006).

Consideration of anisotropy in synthetic turbulence
generators.

Since the most of turbulent flows are strongly anisotropic,
the synthetically generated signal should possess the prescribed
Reynolds stresses. An elegant way to consider the anisotropy was
proposed in Lund et al. (1998). Once three components vi, i =
1,3 of primary velocity are generated separately and conditioned
v(i)v(i) = 1, the secondary velocity field is calculated from the lin-
ear combination

ui = ai jv j (2)

where ai j is the matrix which can be found from the condition
Ri j = uiu j = vmvkaima jk. If v(i)v(i) = 1 and viv j 6=i = 0 the matrix

satisfying R = aaT can be found from the Cholesky algorithm

ai j =


√

R11 0 0

R21/a11

√
R11−a2

21 0

R31/a11 (R32−a21a31)/a22

√
R33−a2

31−a2
32

 (3)

Two aspects should be noted when applying this transforma-
tion: First, the cross-correlations of the primary velocities has to be
zero: ρi j = uiu j 6=i = 0. This is e.g. not fulfilled for the DSRFG tur-
bulence generators while it is fulfilled for TSM and SEM. Second,
the transformation affects the length scales and the spectrum of the
produced fluctuations. The authors derived a modified transforma-
tion which preserves the autocorrelation functions Kornev & Hassel
(2007a).

Incorporation of divergence free condition.
A non-solenoidal character of the generated fluctuations ∇~u 6=

0 was a big drawback to the turbulent spot method. Later on, the
method was extended to obey the continuity condition ∇u = 0 by
deriving the inner velocity distribution from a vector potential A
Kornev & Hassel (2007b). The idea is based on the fact that the ve-
locity field obtained as u = ∇×A satisfies the continuity condition
∇u = ∇(∇×A) = 0 automatically.

Essentially the same idea was proposed later by Poletto et
al Poletto et al. (2013) who used the Biot-Savart kernel which
is obtained from the condition u = ∇×A with the vector poten-
tial A taken as the fundamental solution of the Poisson equation
∆A = −∇× u. We called this new spots of vector potential with
corresponding divergence-free velocity fields as ”vortons” follow-
ing the term introduced by Saffman.

Unfortunately, the vortons, introduced above, are ideal for
isotropic turbulence and difficult to apply for anisotropic flows
close to the wall where the Reynolds stress R11 is much larger
than the other ones. Generally, the anisotropy can be introduced
in two ways. The first one is based on Cholesky transformation
when three velocity components of velocity induced by vorton are
rescaled. This way is not acceptable since it results in the loss of
the divergence-free property. The second way is to dismiss the
Cholesky transformation and to derive anisotropic turbulent spots.
In this paper we present analytical solutions for such a spot obtained
for the homogeneous turbulence.

Extension towards arbitrary anisotropy with reten-
tion of the continuity condition. Derivation of
anisotropic vortons

The current work utilizes another approach for introducing the
anisotropy into the turbulent spots which obeys continuity and al-
lows to reproduce strong levels of anisotropy at the same time. The
approach is basically a continuation of the vorton formulation de-
scribed in Kornev & Hassel (2007b). The generation is performed
in the coordinate system (x,y,z) determined by principle axes of
the Reynolds stresses. The Reynolds stresses in any other system
(x′,y′,z′) are calculated as R′i j = EpiRpqEq j, where Ei j is the ro-
tation matrix describing coordinate transformation between (x,y,z)
and (x′,y′,z′) axes system. Integral lengths in different systems can
be found from the relation:

Li
i(x
′,y′,z′) =

3

∑
k=1

E2
ki

Rkk(x,y,z)
R′ii(x

′,y′,z′)
Lk

k(x,y,z) (4)
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In Kornev & Hassel (2007b), the vector potential is scaled by a
function with spherical symmetry which in case of the spectrum of
decaying turbulence gives an analytic expression:

A(x,y,z) =Ce−
1
2 k2

0r2
γ (5)

Note that also other spectra E(k) could be used in principle. This
would result in different shapes of the inner velocity distribution.
For the sake of simplicity and because it yields reasonably simple
formulas, the current work has been restricted to this spectrum.

The spherical symmetry of A(x,y,z) is the reason for the
isotropy of turbulence generated using these vortons. At this level,
anisotropy can be introduced by stretching the coordinates individ-
ually in a similar manner as it was done in Poletto et al. (2013),
i.e.

x→ x/σx y→ y/σy z→ z/σz.

With this, the vector potential and velocity induced by vorton are
now written as:

A = exp

[
−1

2

(
x2

σ2
x
+

y2

σ2
y
+

z2

σ2
z

)]xγx
yγy
zγz

 (6)

u = exp

[
−1

2

(
x2

σ2
x
+

y2

σ2
y
+

z2

σ2
z

)]
(

γy

σ 2
z
− γz

σ 2
y

)
yz(

γz
σ 2

x
− γx

σ 2
z

)
xz(

γx
σ 2

y
− γy

σ 2
x

)
xy

 (7)

Note that the multiplication with the coordinates is introduced to
make the resulting Reynolds stress tensor a diagonal tensor which
is identified with the diagonal matrix of eigenvalues from a princi-
pal component analysis of the prescribed Reynolds stress tensor. By
aligning the x, y, z-directions of the vorton with the principal direc-
tions of the Reynolds stress tensor, arbitrary anisotropic Reynolds
stresses can be reproduced. The vorton sizes σx, σy and σz and
strength vector components γx, γy and γz are free parameters of the
vorton and can be used to match the prescribed Reynolds stresses
and integral length scales.

Statistical properties of anisotropic vortons
Statistical properties can analytically be derived for homoge-

neous turbulence. We consider the set of fully uncorrelated vortons,
i.e. γikγ jm = 0 for each pairs of k− th and m− th vortons with
strength components i and j. Then the Reynolds stress Ri j of the to-
tal field is equal to the sum of Reynolds stresses produced by each
vorton

Ri j = uiu j =
ns

∑
k=1

uiku jk =
ns

∑
k=1

Ri j,k

Without loss of generality we set the magnitude of the strength to
be unit, i.e. |± γ|= 1. Then the expectation of the Reynolds stress
Ri j at the point (0,0,0) is

Ri j =
∫
V

ui(γ,x)u j(γ,x)P(x)dV

where P(x) is the probability density function of the event that
the vorton is placed at the point x. For the uniform distribution
P(x) = ns/V = c is the vorton density. If the computational do-
main becomes infinite ns should increase, so that the vorton density
remains constant:

Ri j = c
∞∫
−∞

∞∫
−∞

∞∫
−∞

uiu jdxdydz (8)

Substitution of velocity, induced by anisotropic vorton (7), in (8)
results in a simple formula

R = c
π3/2

4


σx(γyσ 2

y−γzσ
2
z )

2

σyσz
0 0

0 σy(γxσ 2
x−γzσ

2
z )

2

σxσz
0

0 0
σz(γxσ 2

x−γyσ 2
y )

2

σxσy

 (9)

Determination of anisotropic vorton parameters σ and γ

Integration of autocorrelation functions reveals a simple and clear
interpretation of stretching parameters σi:

Lx
x =

∫
∞

0
ρxx(ηx,0,0)dηx =

√
πσx (10)

Ly
y =

∫
∞

0
ryy(0,ηy,0)dηy =

√
πσy (11)

Lz
z =

∫
∞

0
rzz(0,0,ηz)dηz =

√
πσz (12)

Therefore, the parameters σi are uniquely determined from the last
formulas σi = Li

i/
√

π . The vorton strength vector γ is found from
the condition for Reynolds stresses:

γyσ
2
y − γzσ

2
z =±2

√
c−1R11

LyLz

Lx

γxσ
2
x − γzσ

2
z =±2

√
c−1R22

LxLz

Ly

γxσ
2
x − γyσ

2
y =±2

√
c−1R33

LxLy

Lz

(13)

where the upper index in L is omitted for the sake of brevity. Since
the determinant of (13) is zero, a solution of the system (13) is only
possible if the following condition is satisfied:

±
√

R11
LyLz

Lx
±
√

R33
LxLy

Lz
=±

√
R22

LxLz

Ly

or

Ly =
±LxLz

√
R22

±Lz
√

R11 +±Lx
√

R33

The signs before different terms are independent of each other.
Therefore, the integral lengths can not be arbitrary. If two length
scales Lx and Ly are prescribed the remaining length should sat-
isfy the conditions above. Particularly, this solution is wrong for
the isotropic turbulence since, if R22 = R33 = R11 and Lx = Lz = L,
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the third length is Ly = L/2 although all integral lengths based on
longitudinal autocorrelation functions should be equal.

This limitation has been overcome by mix of two statistically
independent velocity fields u1 and u2 generated using the algorithm
described above. While the derivation is straightforward, this has
not yet been utilized in the course of the current work.

Difference with SEM Poletto et al. (2013). At this stage,
the following differences with the SEM Poletto et al. (2013) can be
pointed out:

The present method is based on simple analytic function (7)
which has smooth derivatives of arbitrary order. As a result
the divergence free condition is satisfied everywhere within the
computational domain.
The most serious advantage is that, three integral lengths Li can
be explicitly prescribed. For that, the exact analytic relations
were derived to express the vorton sizes σi through Li.

Application to inhomogeneous case
The anisotropic vortons derived above and described by simple

formula (7) were obtained for the homogeneous turbulence, i.e. all
statistical moments are invariant with respect to translation of the
reference system. Only three integral lengths scales can be speci-
fied. The autocorrelation functions cannot be specified since they
are predetermined and correspond to the spectrum of decaying tur-
bulence. The most serious limitation of this solution is the neg-
ligence of inhomogeneity. This is due to the fact, that derivation
of relations for inhomogeneous case leads to complicated nonlin-
ear integral equations whose analytic solution is not possible. Their
numerical solution is also a very laborious procedure. Instead of
that we propose to use homogeneous solutions which locally ne-
glect their interaction. With other words, at each point x,y,z we
place vortons with σi(x,y,z) and γi(x,y,z) calculated using stresses
and lengths specified at this point. Due to overlapping of vortons
with different properties, resulting stresses and lengths have some
deviation from the specified ones. This deviation depends on the
rate of the spatial change of Re and L and sizes of vortons σi. For
instance, in boundary layers Re stresses have the strongest gradi-
ent in normal direction y. However, as shown in the next section,
it is possible to obtain satisfactory results since the overlapping is
governed by σy which is very small near the wall.

IMPLEMENTATION
The Turbulent Spot method has been implemented into the

open source fluid dynamics package OpenFOAM R© Weller et al.
(1998); Jasak et al. (2007). The software OpenFOAM R© was cho-
sen because of its open and modular architecture and because it is
sufficiently sophisticated to apply it to almost all technically rele-
vant flow problems.

During layout of the implementation, focus was put on easy
and simple application. The Turbulent Spot method was thus im-
plemented as a self-contained boundary condition class. As an in-
put, only Reynolds stress and length scale distributions have to be
prescribed. The population of turbulent structures is generated and
maintained online during the simulation.

Algorithm
Vortons are treated in a lagrangian manner. They are con-

tinuously generated upstream of the inlet boundary and are then
convected through the boundary surface. During this period, the
induced velocities on the boundary faces are computed. When a
vorton has passed through the inflow boundary move so far down-
stream, that its induced velocity on the inlet vanishes, it is deleted

from the vorton population. To best fit into the unstructured grid
framework of OpenFOAM R©, the algorithm works on a per-face
basis.

The first goal is to ensure a uniform coverage of the inlet sur-
face with vortons. A volumetric concentration’ of vortons is de-
scribed by the parameter c:

c =
nsVv

V
=

ns

V
L1L2L3 (14)

with the number of vortons ns covering a space volume V and the
virtual volume of a vorton expressed by the product of its integral
length scales Vv = L1L2L3.

The value c is an external parameter for the generation proce-
dure. It does not influence the generated statistics directly, i.e. after
a sufficiently long averaging time the generated Reynolds stresses
and length scales are equal, independent from the value of c. A
value much lower than unity c� 1 leads to intermittency. Large
values lead to a growing number of vortons present per timestep
and thus to an increase in computational effort and memory require-
ment. For the subsequent simulations, usually values of c = 2 have
been used. This avoids intermittency by ensuring some reasonable
amount of overlapping between neighboring vortons.

The uniform distribution of vortons in space is achieved by
placing them in the swept volume of the face under considera-
tion. Therefore, vortons are queued up with random face-normal
distances, one vorton at each distance level. Each vorton is also
randomly shifted within the plane parallel to its associated face, but
only within the bounds of the face.

Each point in the swept volume shall have an equal probability
for being chosen, which is related to the concentration parameter c

P(~x) =
c

Vv
(15)

The expected distance between subsequent vortons can be derived
as

〈∆v〉=
Vv

cA f
=

L1L2L3

cA f
(16)

with A f being the area of the face under consideration. The vor-
ton queue upstream of each face is continuously replenished so that
all vortons which will affect faces during the current timestep are
contained.

RESULTS
Channel Flow

The described method is applied to a generic channel flow test
case. Channel flows essentially comprise two turbulent boundary
layers at the top and bottom wall. The turbulence is anisotropic
in the whole domain and isotropy is only approximately recovered
in a small region near the channel mid plane. Compared to more
complex flow cases, where the turbulence evolution downstream of
the inlet might be quickly dominated e.g. by complicated geometry
or other forcing, the turbulence in the channel is only caused by
the presence of the flat wall and develops just very slowly naturally.
These circumstances make the channel flow a quite challenging test
case for turbulent inflow generation.

Channels with three Reynolds numbers have been simulated
for which DNS results are available Moser et al. (1999). Parameters
of all simulations are summarized in table 1.
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Simulations with Cyclic Boundary Conditions
Conventionally, channel flow simulations are carried out without
inflow turbulence generation using cyclic boundary conditions in
all directions including the bulk flow direction and a mean pressure
gradient for adjusting the bulk flow velocity. Such simulations have
been done in advance of the inflow generator simulations to prove
the mesh and numerical settings.
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Figure 1: Cyclic channel flows: Reynolds stresses, a) Reτ =
180, b) Reτ = 395, c) Reτ = 590

The results of the cyclic channel simulations suggest that the
resolution and numerical settings are sufficient. The friction co-
efficients for all Reynolds numbers are plotted in figure 2 and the
Reynolds stresses are shown in figure 1. All profiles are considered
to be reasonably close to the reference values.

Inflow Generator Simulations Once the numerical
settings are validated, the cyclic boundaries in axial direction have
been replaced by a velocity inlet/pressure outlet pair. In addition,
the length of the channel was increased and the pressure gradient
forcing removed, because it becomes unnecessary. The parameters
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Figure 2: Cyclic channel flows: friction coefficients

a)

b)

Figure 3: Inflow channel simulations at Reτ = 395: compari-
son of a) friction coefficient b) pressure fluctuations vs. axial
distance for different types of turbulent structures

of these simulations are contained in table 1 as well.
The reynolds number Reτ has been varied for simulations with

the anisotropic vorton and for the middle Reynolds number Reτ =
395 only, the influence of the turbulent structure was evaluated.

The friction coefficient c f = τw/
1
2 ρu2

m can be regarded as a
measure of the reality level of the generated turbulence. As visible
in figure 2, the friction coefficient vs. axial length should ideally be
a horizontal curve. Figure 3a shows the friction coefficient evolu-
tion along the channel at Reτ = 395 for different turbulent structure
types. Again, there is an initial deviation from expected value. It
decreases with running length and is identified as the adaption dis-
tance. This distance depends on the type of structure used. The
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Reynolds number δ Domain size Resolution Grid size

Reτ (H/2) L×H×W ∆+
x ×∆

+
y,wall ×∆+

z nx×ny×nz

180 1 cyclic BCs 6×2×4.2 20×2×10 54×48×75

inflow BC 12×2×4.2 20×2×10 108×48×75

395 1 cyclic BCs 6×2×4.2 20×2×10 118×64×165

inflow BC 12×2×4.2 20×2×10 237×64×165

590 1 cyclic BCs 6×2×4.2 20×2×10 177×75×247

inflow BC 12×2×4.2 20×2×10 354×75×247

Table 1: Parameters of the channel flow simulations

Reτ turbulent structure type

180 anisotropic vorton

395 hat spot

isotropic vorton

anisotropic vorton

anisotropic vorton, Ruv = 0

DSRFG turbulence (“Modal”) Adamjan (2011)

590 anisotropic vorton

Table 2: Inflow channel simulations: computed variants

Figure 4: Inflow channel simulations: comparison of friction
coefficient vs. axial distance for different Reynolds numbers
(using the anisotropic vorton)

most primitive hat spot type needs the longest time to morph into
real turbulence. A better behavior is obtained with the vorton types.
With these structures, the adaption distance is about one channel
height H shorter. The anisotropic vorton simulations have been car-
ried out in two variants: with the full Reynolds stress tensor and
with a diagonal-only tensor (Ruv = 0).

In the former case, since the generated primary fluctuation field
is always diagonal, the off-diagonals are produced by aligning the
vortons with the principal axes of the prescribed Reynolds stress
tensor. Since the longitudinal length scale is large compared to the
lateral ones, an oblique orientation of the vortons leads to increased

smoothing of the reproduced Reynolds stress profile. Also, oblique
structures intersect with the wall and thus create additional para-
sitic pressure noise. Thus in summary, aligning the structures by
omitting Ruv produces better results.

In figure 4, the friction coefficient for all three considered Reτ

is shown, normalized by its respective asymptotic value. This shall
illustrate the sensitivity of the synthetic turbulence to the Reynolds
number. The figure indicates that the behavior is quite compara-
ble, if the Reynolds number is sufficiently large. Then the adaption
length has the same length in terms of dimensionless wall units. But
if the Reynolds number is sufficiently low, the artificial turbulence
does not survive. This is at least the case for the near-transition case
of Reτ = 180.

A big advantage of the divergence-free vorton structures over
continuity-breaching structures like hat spots again becomes obvi-
ous from figure 3b: the artificial pressure noise is greatly reduced.
While in the case of hat spots continuity is never fulfilled, isotropic
vortons fulfill it only in the case of isotropy of the Reynolds stresses.
Anisotropic vortons always fulfill continuity in the analytical case 1.
This is reflected by the hierarchy of curves in figure 3b. The largest
artificial pressure noise is found for hat spots. That for anisotropic
vortons is minimum while isotropic vortons are found in between.
The difference between hat spots and anisotropic vortons is more
than one order of magnitude.

SUMMARY
A novel type of turbulent spot has been derived. It allows ful-

fillment of the continuity constraint not only for isotropic Reynolds
stresses but also for arbitrarily anisotropic ones.

The behavior of this structure has been demonstrated on a
channel flow test case. Both case studies confirm that 1) the adap-
tion length is positively influenced by application of vortons instead
of simplicity-motivated velocity distributions like hat spots and 2)
by being able to obey continuity always, the artificial pressure noise
is greatly reduced.
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