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ABSTRACT
In the numerical simulation of turbulent flows, resolution is of-

ten low. The solution in those under-resolved regions is strongly af-
fected by the truncation error of the underlying numerical schemes.
Although, the truncation error can be used to model the evolu-
tion of otherwise resolved scales - it acts as a physically consis-
tent subgrid-scale (SGS) model. In particular, the truncation er-
ror of high-order WENO-based schemes can function as an implicit
SGS model. The sixth-order adaptive central-upwind weighted es-
sentially non-oscillatory scheme with implicit scale-separation, de-
noted as WENO-CU6-M1, allows for physically consistent implicit
SGS modeling when its parameters are chosen properly.

Schranner et al. (2016) determined an optimal combination
of the WENO-CU6-M1 modeling parameters by means of design
optimization (DO). Optimizing the WENO-CU6-M1 parameters is
computationally expensive. This work proposes a general itera-
tive optimization algorithm which is based on hierarchical Bayesian
modeling. It allows to reduce the computational costs for optimiz-
ing WENO-CU6-M1 parameters.

Optimization implies the procedure of identifying input-output
relations of a system. Thereby, the minimum or the maximum out-
put of a system, as well as the input for which it occurs, may be
sought. The proposed optimization algorithm relies on Gaussian
Processes (GP). Methods to fit a GP are proposed. Based thereupon,
an optimization algorithm which iteratively improves the quality
of the GP is introduced. To complete this work, the algorithm is
used to identify an optimal parameter set for the WENO-CU6-M1
scheme.

INTRODUCTION
Modified differential equation analysis (MDEA) (Margolin

& Rider (2002)) has shown that the truncation error of nonlin-
ear discretization schemes can be constructed to represent an im-
plicit subgrid-scale (SGS) model for turbulent flows (Adams et al.
(2004)). The nonlinear regularization mechanism of high-order fi-
nite volume schemes with shock-capturing capabilities can be em-
ployed for implicit large-eddy simulations (ILES). For a review re-
fer to Grinstein et al. (2007). On the basis of a spectral extension
of the MDEA, the truncation error of a nonlinear scheme has been
designed to recover the theoretical spectral eddy viscosity when the
flow is turbulent and under-resolved. Such a situation, where the
non-negligible local truncation error of a numerical scheme recov-
ers correct physical SGS behavior, is called physically consistent
behavior (Balsara & Shu (2000); Hickel et al. (2006)).

Hu et al. (2010) proposed a weighted, essentially non-
oscillatory (WENO) scheme combining the advantages of an up-
wind scheme, e.g., the fifth-order WENO scheme (Jiang & Shu
(1996)), and a sixth-order central scheme. It adaptively alters its
biasing between central and upwind by evaluation of the smooth-
ness indicators of the optimal higher-order stencil and lower-order

upwind stencils. Thereby, it decreases numerical dissipation in
smooth flow regions and permits a numerically stable solution in
non-smooth flow regions while preserving shock-capturing capa-
bilities. It is denoted as WENO-CU6. Based thereupon, a central-
upwind WENO scheme with implicit SGS modeling capabilities
has been developed (Hu & Adams (2011)); it is denoted as WENO-
CU6-M1.

Schranner et al. (2013) identified that WENO-CU6-M1 offers
a set of free parameters, enabling implicit subgrid-scale modeling
by controlling scale separation of resolved and non-resolved scales
for compressible as well as incompressible flows. In combination
with the material modeling, i.e., equation of state (EOS), and an
appropriate Riemann solver, an adjustment of the model permits re-
covery of self-similar isotropic turbulence when physical viscosity
diminishes.

Schranner et al. (2016) determined an optimal combination of
the WENO-CU6-M1 modeling parameters by means of design opti-
mization (DO). The notion of being optimal implies that the transi-
tion is predicted physically consistently and inertial subrange scal-
ing, which is characteristic of isotropic turbulence, is recovered as
most optimally when dissipating energy only within the SGS.

In this work, the applicability of an iterative stochastic opti-
mization approach is investigated. The application to find an op-
timal combination of the WENO-CU6-M1 modeling parameters is
sought. In the following, the formulation of the optimization prob-
lem and an appropriate optimization algorithm are layed out.

MODEL FORMULATION
Weakly compressible and barotropic fluids can be modelled

by Tait’s equation of state (EOS). Tait’s EOS decouples the energy
equation from the continuity and momentum equations. Thus, the
flow is governed by equations for the conservation of mass and mo-
mentum, only. In one dimension (for simplicity), U = (ρ,ρu) is the
solution of

∂U
∂ t

+
∂

∂x
F(U) = 0 (1)

In a discrete space-time-domain, the discrete conservation equation

Ûn+1
[i] = Ûn

[i]+
∆t
4x[i]

(
F[i− 1

2 ]
−F[i+ 1

2 ]

)
(2)

for the cell-averaged solution Û[i] =
1

∆x[i]

∫
∆x[i]

Un
[i]dx requires approx-

imations of the cell-face fluxes

F[i± 1
2 ]
=

1
∆t

tn+1∫
tn

F[i± 1
2 ]

dt =
1
∆t

tn+1∫
tn

F
(

U[i± 1
2 ]

)
dt (3)
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where ∆t is sufficiently small.
A low-dissipation advective flux approximation is due to the

Roe (1981) approximate Riemann solver, which is used within the
scope of this work. The key idea of these is to use the linearized
local flux Jacobian Ã = Ã(U (l)

,U (r)
). (l) and (r) denote the high-

order reconstructed conservative states at the left and right side of
cell-face [i± 1

2 ]. The eigenvalues of Ã, λ̃ ( j)(U (l)
,U (r)

) and right

eigenvectors K̃( j)(U (l)
,U (r)

) are determined, so that the Roe nu-
merical flux can be computed as

F[i+ 1
2 ]
=

1
2

(
F(U(l)

)+F(U(r)
)
)
− 1

2

m

∑
j=1

δ̃
( j)
∣∣∣λ̃ ( j)

∣∣∣K̃( j) (4)

where δ̃ ( j) denote the wave strengths.
The conservation equations (2) are integrated explicitly in time

with a 3rd order TVD Runge-Kutta scheme Shu & Osher (1988).
In order to obtain U(α)

[i± 1
2 ]

, where α is either l or r, weighted es-

sentially non-oscillatory (WENO) schemes define m reconstruction
polynomials for non-averaged conservative cell-face vector candi-
dates

u(α,γ)

i+ 1
2

=
m−1

∑
j=0

cγ, jÛi−γ+ j γ = 0, ...,m−1 (5)

on m candidate stencils Sγ [i] ≡
{

Û[i−γ], ..., Û[i], ..., Û[i−γ+m−1]

}
in

the viscinity of the cell-face and combine these convexly according
to

U(α)

[i± 1
2 ]
=

m−1

∑
γ=0

ω
(α)
γ u(α,γ)

i+ 1
2

(6)

(Shu (1998)). Hereby, the set of nonlinear weights
{

ω
(α)
γ

}
, sat-

isfying ω
(α)
γ ≥ 0,

m−1
∑

γ=0
ω
(α)
γ = 1, ensures stability and consis-

tency. Jiang & Shu (1996) have formulated computationally effi-
cient weights such that these are C∞, i.e. smooth functions of the
involved cell averages:

ω
(α)
γ =

α
(α)
γ

m−1
∑

s=0
α
(α)
s

α
(α)
γ = f

(
dγ ,β

(α)
γ

)
(7)

where dβ and β
(α)
γ are the ideal weights and smoothness indicators,

respectively.
“The smoothness indicators diminish with increasing smooth-

ness of the solution on a stencil” (Schranner et al. (2013)). In defin-
ing αγ , the core idea is to consider each of the u(γ)

i+ 1
2

according to

their smoothness by weighting them appropriately. Thereby, ω
(α)
γ

approximates dβ . Yet, if u(x) was to contain a discontinuity in at

least one of the stencils Sγ [i], leading to β
(α)
γ = O(1), the corre-

sponding weights ω
(α)
γ needs to diminish to exclude the approxima-

tion u(γ)

i+ 1
2

and thereby keep the overall non-oscillatory behaviour.

The WENO weighting factors α
(α)
γ of Jiang & Shu (1996) fulfill

these requirements:

α
(α)
γ =

dγ(
ε +β

(α)
γ

)q (8)

The WENO-CU6-M1 weights, a further-development of the origi-
nal WENO-weighting presented in equation (8), remedy excessive
dissipation of the underlying WENO-CU6 scheme while preserv-
ing its shock-capturing properties and thus allow to recover physi-
cal consistency for both, the solenoidal and the dilatational compo-
nents of the velocity field, without the need to explicitely distinguish
these (Hu & Adams (2011)). The WENO weighting factors of the
WENO-CU6-M1 scheme are:

α
(α)
γ = dγ

(
Cq +

τ
(α)
6

ε +β
(α)
γ

)q

γ = 0, ...,3 (9)

where the reference smoothness indicator is τ
(α)
6 = β

(α)
3 −

1
6

(
β
(α)
0 +4β

(α)
1 +β

(α)
2

)
, according to Hu et al. (2010) and Borges

et al. (2008). u(α,γ)

i+ 1
2

, dγ , β
(α)
γ , with γ = 0,1,2 are identical to the

ones of the 5th order WENO scheme, which can be found in Shu
(1998). u(α,3)

i+ 1
2

, d3, β
(α)
3 , as well as the four ideal weights may be

found in Schranner et al. (2016).

OPTIMIZATION
Statement of the Problem

In the formulation of the WENO-CU6-M1 scheme two param-
eters can be identified. Those are the integer power exponent q,
which controls the amount of nonlinear dissipation (Henrick et al.
(2005)), and the linear weight bias Cq, which reduces numerical
dissipation for higher Cq (Hu & Adams (2011)). They define the
parameter set x = (Cq;q).

For a given material modeling and Riemann solver, an opti-
mal parameter set is sought so that the thereby stated implicit LES
model is fulfilling two design requirements best. Firstly, transi-
tioning of the incompressible, physically inviscid, originally two-
dimensional Taylor-Green vortex (TGV) (Taylor & Green (1937))
to three-dimensional statistically isotropic turbulence (Fauconnier
et al. (2009)) must occur. Secondly, Kolmogorov scaling inertial
subrange, i.e. E(k) = Cε2/3k−5/3, ought to be recovered most op-
timally as a consequence of proper transition. C and ε refer to the
Kolmogorov constant and the the dissipation rate, respectively.

The global optimum is expected in the parameter domain X =
1,000≤Cq ≤ 20,000×1≤ q≤ 20 (Hu & Adams (2011); Schran-
ner et al. (2013)). Schranner et al. (2016) define the quality of a
sample parameter set - and thus the value of the target function z(x)
- as the total least-squares difference between the numerically sim-
ulated Kolmogorov scaling inertial subrange E [ki] and the original
Kolmogorov scaling inertial subrange

z(x) =
m

∑
i=n

(
E [ki]−Ak−5/3

i

)2
(10)

where n and m mark the first and last wave number of the iner-
tial subrange. A = Cε2/3 summarizes the dependence of the the-
oretical Kolmogorov scaling inertial subrange on the Kolmogorov
constant C, and the dissipation rate ε . Evaluation of this function
requires knowledge of A, which is different for each sample. Linear
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regression analysis presented in Schranner et al. (2016) is used to
determine A. Since one is only interested in the deviation from the
−5/3-law, we use

z(x) =
m

∑
i=n

(
E [ki]

A
− k−5/3

i

)2
(11)

as target function in this work. Therein, the numerically simulated
spectra are normalized with A.

Finally, the optimization problem is to find the parameter set
x = (Cq,q), also called input vector, where the globalmin(z(x)) of
the target function z(x) occurs. The target function is evaluated af-
ter t = 20s. Completion of transition is expected at t ≈ 9s (Schran-
ner et al. (2016)). Simulating a TGV evolution up to t = 20s on
a domain with 64 cells in each of the three spatial directions re-
quires approximately 80 minutes on 64 processors on dual-socket
Intel SandyBridge-EP Xeon E5-2670 nodes.

Iterative Bayesian Optimization Algorithm
The response surface approach (Schranner et al. (2016); Jones

et al. (1998)) reduces the complexity of otherwise expensive tar-
get functions. Response surfaces, also denoted as surrogate mod-
els, mimic the behavior of the target function z(x) by means
of an approximate f (x). Typically, they are simpler to evalu-
ate and can be optimized by standard optimization techniques.
The surrogate model is constructed based on a training set D =
{(xi,yi) | i = 1, . . . ,n} of n observations, with input vectors xi and
corresponding observations yi. For notational simplicity, the matrix
X which comprises the training points xi is introduced. Observa-
tions are associated to the target function by y = f (x) + ε , with
Gaussian measurement noise ε . For computer experiments ε = 0
holds, i.e. observations accord to target function values. In the
scope of this work, a Gaussian Process (GP) serves as surrogate
model.

Gaussian Process A Gaussian Process is a non-
parametric stochastic surrogate model. Non-parametric implies that
the structure of the model is variable and free of parameters. In
general, non-parametric models are based on fewer assumptions
than parametric ones and thus are more flexible. These are often
applied when little is known about the functional dependencies of
the system of interest. To define the prior distribution of a GP, the
mean m(x;θ m) and covariance function k(x,x′;θ k) of the distribu-
tion over functions have to be specified. The covariance function
provides the covariance between two locations x and x′ in the in-
put space. θ m and θ k are a priori unknown free hyperparameters.
Hyper emphasizes that these are parameters of the prior distribution
of a non-parametric model. Hyperparameters describe properties,
such as characteristic length-scales or smoothness of the mean, re-
spective, covariance function. Thus, prior knowledge of the target
function can be incorporated by the choice of the mean and covari-
ance function and their hyperparameters.

At unobserved points x∗, a GP predicts the function value
f∗ = f (x∗) to be normally distributed with mean f̄∗(x∗) and covari-
ance Cov( f∗(x∗)), i.e. f∗ ∼N ( f̄∗(x∗),Cov( f∗(x∗))). Analytical
expressions for the posterior predictive mean and covariance in the
absence of measurement noise ε = 0 are given by

f̄∗ = m(x∗;θ m)

+k(x∗,X;θ k)
T K−1(y−m(X;θ m))

(12)

and

Cov( f∗) = k(x∗,x∗;θ k)

− k(x∗,X;θ k)
T K−1k(x∗,X;θ k)

(13)

Therein, K denotes the covariance matrix. Its entries are defined
as Ki j = k(xi,x j;θ k). The covariances between the test input x∗
and training points xi are comprised in the vector k(x∗,X;θ k) with
entries ki = k(x∗,xi;θ k). Note, that the predictive mean of a GP in-
terpolates the training data D in the absence of measurement noise
ε = 0, which is beneficial when predicting the outcome of computer
experiments. The predictive variance describes the uncertainty of
the function f (x), knowing D . It is high in regions where the pop-
ulation provides few data, compared to regions with higher data
density. It can easily be shown, that the prediction for a test in-
put according to a training input yields a zero predictive covariance
(Jones et al. (1998)).

The mean function of the Gaussian process is often chosen to
be zero, i.e. m(x) = 0. This approach is pursued throughout this
work. Accordingly, the covariance function k(x,x′;θ k) is the re-
maining part to define the surrogate model. For this purpose the
squared-exponential covariance function

k(x,x′;θ k) = exp
(−r2(x,x′;θ k)

2

)
(14)

is chosen (Rasmussen (2006)). Automatic relevance determination
is achieved by

r2(x,x′;θ k) =
∣∣∣(x−x′)T M(x−x′)

∣∣∣ (15)

with the matrix M = diag(l)2, where l is the vector of positive char-
acteristic length-scales for each dimension of the input space. l
states the vector of hyperparameters θ k of the covariance function.
The hyperparameters have to be adapted when fitting the model to
the training set D . This process is called inference and is based
on hierarchical Bayesian modeling. Note, that non-zero mean func-
tions could also depend on hyperparameters which would have to
be fitted.

Inference of unknown quantities is possible by inverse proba-
bility. This is based on the Bayes’ rule. Without further derivation,
details can be found in Rasmussen (2006), the Bayes’ rule

p(θ |y,X) =
p(y|X ,θ)p(θ)

p(y|X)
(16)

on which the inference of the hyperparameters is based is given.
It states an expression for the posterior distribution of θ based on
D . Inferring knowledge about the hyperparameters is based on the
data of the training set. One approach to determine point-estimates
of the hyperparameters is to maximize the marginal likelihood with
respect to the hyperparameters. This approach is called Maximum
Likelihood Estimation (MLE). The marginal likelihood is the first
term of the enumerator in the above equation and is analytically
tractable. Nevertheless, in a fully Bayesian approach a prior distri-
bution (second term in the enumerator of the above equation) has to
be specified for the hyperparameters. Specific values for these are
obtained by averaging over the posterior distribution. This can be
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realized by a Markov Chain Monte Carlo (MCMC) method (Neal
(1997))

E[θ ] =
∫

θ p(θ |y,X)dθ ≈ 1
N

N

∑
i=1

θ i (17)

To approximate the integral sufficiently precise, a large number N of
samples {θ i}N

i=1 from the posterior distribution p(θ |y,X) is drawn.
To sample from the posterior distribution, the Metropolis algorithm
(Metropolis et al. (1953)) as implemented in Caldwell et al. (2009)
is used. Convergence status is monitored as suggested by Gelman
& Rubin (1992).

Algorithm Based on GP surrogate models an iterative al-
gorithm for global optimization can be formulated. The algorithm
closely follows the Efficient Global Optimization (EGO) algorithm
proposed by Jones et al. (1998). In a first step, an initial training
set Dinitial is determined. The input vectors xi of Dinitial can be
obtained by standard Design of Experiment techniques. Full Fac-
torial Design and Latin Hypercube sampling can be mentioned as
representatives. Both methods require to split each input dimen-
sion in the same number r of regions. For the former the number
of required samples can be calculated by rD, where D denotes the
dimension of the input vectors. This is not feasible for expensive
target function. Latin Hypercube sampling only requires r samples
in total. Thus, in this work Distributed Hypercube Sampling (Man-
teufel (2001); Beachkofski & Grandhi (2002)), a variant of the Latin
Hypercube Sampling (McKay et al. (2000)), is used.

In a second step, a Gaussian Process is fitted to the initial train-
ing set. This can be realized with the inference techniques presented
above.

Subsequently, the iterative part of the algorithm is executed.
It aims to iteratively improve the quality of the surrogate model at
places where a global minimum is suspected by evaluating samples
in those regions. To identify such interesting regions, a quantity
which describes a trade-off between exploiting (sampling where the
minimum of the target function is expected) and improving (sam-
pling where approximation error may be high) the approximation is
required (Jones et al. (1998)). The expected improvement (EI) uni-
fies those needs (Kleijnen et al. (2012); Jones et al. (1998); Jones
(2001)). The EI is defined as

EI[x] = ( fmin−E( f (x)))Φ

(
( fmin−E( f (x)))√

Cov( f (x))

)

+
√

Cov( f (x))φ

(
( fmin−E( f (x)))√

Cov( f (x))

) (18)

where φ(·) and Φ(·) denote the probability density function respec-
tively the cumulative distribution function of the standard normal
distribution. fmin denotes the minimum of the posterior predictive
mean of the GP and thus of the surrogate surface. Accordingly,
E( f (x)) and

√
Cov( f (x)) are the posterior predictive mean and

standard deviation of the GP at point x. It can be identified, that
the first term in equation (18) accounts for exploiting the surrogate
surface, whereas the second term accounts for improving the ap-
proximation. Maximizing the EI delivers the next sample for which
the target function is evaluated. The data set is extended with the
new sample and its corresponding target function value. Based on
the new data the Gaussian process is refitted and the next iteration is
performed. In general, it is not necessary to infer the hyperparam-
eters for each iteration. Instead, the hyperparameters inferred from
the initial population can be used.

Table 1. Supposed location (Cq,min,qmin) of the minimum of the
target function z(x) after the i-th iteration of the optimization algo-
rithm.

i Cq,min qmin i Cq,min qmin i Cq,min qmin

1 6563.1 17 2 5583.3 18 3 5579.3 18

4 5957.1 17 5 3808.2 9 6 3996.1 9

7 1992.1 7 8 3272.2 5 9 7.7435e-05 1

10 3693.9 8 11 3732.7 9 12 3732.8 9

13 1923.3 4 14 3155.5 12 15 3197.8 11

16 1912.1 4 17 1928.7 4 18 1925.5 4

19 1936.1 4 20 1941.3 4 21 1951.1 4

22 1950.3 4 23 1959.2 4 24 1960.2 4

25 2043 4 26 7355.4 8 27 3570.1 10

28 3564.2 10 29 3548.1 10 30 3532 10

31 3538 10 32 3538.3 10 33 3542.6 10

34 3542.4 10 35 9445.4 16 36 9403.9 16

37 2431.5 5 38 2416.3 5 39 9007.5 15

40 9002.5 15 41 9021.4 15 42 6174.2 13

43 8686.9 15 44 8686.2 15 45 8718 15

46 8755.7 15 47 8839.9 15 48 8838 15

49 8362.3 15 50 8355.8 15

During one iteration step of the overall algorithm, two respec-
tively three optimization problems have to be solved. Those are the
maximization of the log marginal likelihood in the case of a MLE
estimate for the hyperparameters, the minimization of the predic-
tive mean of the Gaussian process, and the maximization of the EI.
Since analytical expressions are available for those target functions,
and they are cheap to evaluate, standard optimization techniques
can be used. To infer θ the inverse of the covariance matrix has
to be calculated for different θ . This is realized with a Cholesky
decomposition. The computational effort increases marginally with
the size of D .

In the following, the algorithm is applied to determine an opti-
mal set of the WENO-CU6-M1 parameters.

RESULTS
The optimization problem is formulated as introduced in the

preceding. Dinitial consists of n = 20 samples. The values of the
hyperparameters θ k = (lCq , lq), which correspond to the character-
istic length-scales in Cq respectively q direction, are determined by
MCMC for Dinitial . An uniform prior has been chosen for both hy-
perparameters. They are reused for the subsequent 50 iterations of
the optimization algorithm. This yields a total of 70 evaluations of
the target function. Figures 1 and 2 depict the histograms of the
marginalized posterior distributions of the hyperparameters based
on 400000 samples of the converged Markov Chain for each hyper-
parameter. Mean values lCq = 0.9122 and lq = 0.6625 result.

Figures 3 and 4 show the response surface f (x) of the tar-
get function z(x), its contour plot, and the training set D after
completion of 50 iterations. In figure 4, the number besides the
dots of D indicate the corresponding iteration these were acquired.
Dots marked with 0 are members of the initial training set Dinitial .
One finds that in the vicinity of a line with the slope ∆q/∆Cq =
19/10000, passing through the origin (Cq,q) = (0,0), the surro-
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Figure 1. Histogram of the marginalized posterior distribution of
the hyperparameter lCq obtained from MCMC.
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Figure 2. Histogram of the marginalized posterior distribution of
the hyperparameter lq obtained from MCMC.
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Figure 3. Surface and contour of the surrogate model after 50 it-
erations.
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Figure 4. Contour of the surrogate model and input vectors of the
training set D after 50 iterations.
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Figure 5. Comparison of E(k) for the original xoriginal = (1000,4), optimal xopt,c = (8700,15), and high target value xhigh target = (400,15)
model to the theoretical E ∝ k−5/3 inertial subrange spectrum.

gate model value is minimal. Hence, from the target function,
fmin = f (xmin) ∼ zmin = z(xmin) is suspected. Indeed, for higher
iterations, a region of high sample density develops around the line
where fmin is suspected. Other samples are acquired where the ini-
tial sample density is low, i.e. Cq > (10000/19)q. This reflects
the trade-off between exploiting and improving the approximation.
Table 1 shows the computed location of the minimum after each it-
eration i. The minimum is suspected to be in the vicinity of xopt,a =

(1900,4), xopt,b = (3550,10) or xopt,c = (8700,15). The values
of the target function at those points are z(xopt,a) = 0.298667,
z(xopt,b) = 0.350967 and z(xopt,c) = 0.298038. The mean target
function value of all sampled points is z̄(x) = 0.353454. The global
optimum is suspected at xopt,c.

Figure 5 depicts the kinetic energy spectra at t = 20 for the
WENO-CU6-M1 scheme based on xoriginal = (1000,4) (Hu &
Adams (2011)) with z(xoriginal) = 0.329484, xopt,c = (8700,15),
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and xhigh target = (500,14) with z(xhigh target) = 0.460451 where a
high target value evaluates. They are compared to the theoretical
inertial subrange spectrum E(k) ∝ k−5/3. Numerical tests suggest
n = 6 and m = 32 as the first and last wave number of the inertial
subrange spectrum. It can be detected, that oscillations are signifi-
cantly lower for the optimal model.

CONCLUSION
The works Schranner et al. (2013) and Schranner et al. (2016)

identified that a WENO-CU6-M1-based scheme can be shaped such
that the energy cascade outscatter and backscatter is physically
consistently, and that design optimization is applicable straightfor-
wardly. In consequence an implicit subgrid-scale model has been
formulated and the optimal scheme has demonstrated to be robust
for a wide range of turbulent and non-turbulent flows.

In this work, an efficient iterative Bayesian optimization al-
gorithm has been proposed and employed successfully to optimize
the free parameters, the integer power exponent q and the linear
weight bias Cq of the WENO-CU6-M1 scheme with regard to two
requirements. Convergence of the algorithm for the highly nonlin-
ear target function requires only half of the number of samples as the
thin-plate RBF surrogate model optimization approach proposed in
Schranner et al. (2016).

Generally, the design optimization algorithm identifies regions
in the input domain in which the global minimum is suspected. Due
to the fact that it is not ensured that the optimal parameter set is also
valid for other flow configurations, identifying regions where the
minimum is assumed can be used when optimizing the parameters
to other flow configurations.
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