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ABSTRACT

We investigate the basics of the linear generation of

acoustic waves by vortex modes in homentropic compress-

ible flows with constant shear of velocity, U0 = (Ay,0,0).
The mathematical and physical aspects of the generation

are grasped by analyzing the dynamics of single, up-shear

tilted pure vortex spatial Fourier harmonics (SFHs). The

key to comprehending the wave generation process is the

possibility of splitting the perturbation field of the consid-

ered SFH into its vortex and wave parts at the moment of

abrupt wave emergence. Essentially, the linear wave gener-

ation mechanism by vortex SFHs in three dimensions (3-D)

is similar as in two dimensions (2-D), whereas latter dom-

inates the generation process. The anisotropy of this linear

mechanism is also active in 3-D and, thus, confirms the con-

clusion drawn by Hau et al. (2015) that the anisotropic lin-

ear generation mechanism is missed by any formulation of

an acoustic analogy as introduced by Lighthill (1952, 1954)

due to their topological incompatibility.

1 INTRODUCTION

The generation of acoustic waves by (turbu-

lent/coherent) vortices is a central problem when it comes

e.g., to the design of turbomachinery and jet engines.

The principal differences between linear and nonlinear

mechanisms of acoustic wave generation by vortex pertur-

bations in shear flows is found in the strength, geometry

of propagation and length/time scales of the generated

waves. In the 1990s there has been a breakthrough in the

understanding of non-uniform/shear flow dynamics. Their

mathematical specificity was revealed and proven (see e.g.,

Schmid & Henningson (2001) and references herein), i.e.,

when applying modal analysis, the appearing operators

are non-normal and, consequently, the corresponding

eigenmodes are non-orthogonal. Due to this, the eigen-

modes interfere and ergo a suitable approach needs to be

applied to analyze this. Discarding the modal analysis and

adopting the so-called nonmodal approach these issues are

circumvented and the transient dynamics can be grasped.

Originally devised by Lord Kelvin (1887), one formulation

of the nonmodal approach consists of the transformation

from the laboratory frame of reference to one co-moving

with the flow and then studying the evolution of SFHs

without spectral expansion in time. This is one of a

family of Ansatz functions for flows with constant shear

of velocity (Hau et al., 2017). Yoshida (2005) has been

mathematically proven that the Kelvin mode approach

represents the optimal technique for stability studies of

constant shear flows.

2 BASIC GOVERNING EQUATIONS

We linearize the compressible Euler equations about a

3-D homentropic (uniform pressure/density) flow with con-

stant velocity shear U0 = (Ay,0,0), A > 0, assuming that

the disturbances are adiabatically compressible with con-

stant speed of sound cs, p = c2
s ρ:

[

∂

∂ t
+Ay

∂

∂x

]

ρ

ρ0
+

(

∂

∂x
ux +

∂

∂y
uy +

∂

∂ z
uz

)

= 0 ,

[

∂

∂ t
+Ay

∂

∂x

]

ux +Auy +c2
s

∂

∂x

ρ

ρ0
= 0 ,

[

∂

∂ t
+Ay

∂
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]

uy +c2
s

∂

∂y

ρ

ρ0
= 0 ,

[

∂

∂ t
+Ay

∂

∂x

]

uz +c2
s

∂

∂ z

ρ

ρ0
= 0 .

(1)

Employing the Kelvin mode approach, SFHs of perturba-

tions with time-dependent shearwise wavenumber ky(t) =
ky(0)− Akxt are introduced: ψ(x, t) = ψ̃(t)exp(ik(t) ·x),
where ψ = (ux,uy,uz,ρ), x = (x,y,z), k = (kx,ky,kz). This

reduces the system of PDEs to one of ODEs. Moreover, the
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following non-dimensional variables are introduced:

κ(τ) = |k(t)|/kx =
√

1+β 2(τ)+ γ2 ,

β (τ) = ky(0)/kx −M τ = β (0)−M τ ,

x̂ = kxx , τ = cskxt ,M = A/(kxcs) , γ = kz/kx ,

D = iρ̃/ρ0 , v = ũ/cs ,V0 = U0/cs .

(2)

Hence, the set of ODEs in time is given by:

d

dτ
vx =−M vy −D ,

d

dτ
vy =−β (τ)D ,

d

dτ
vz =−γD ,

d

dτ
D = vx +β (τ)vy + γvz .

(3)

Eqs.(3) allow the formulation of an invariant in time

W = (1+ γ2)vy −β (τ)(vx + γvz)−M D ,
dW

dτ
= 0 , (4)

which corresponds to the conservation of the potential vor-

ticity (PV) in k-space and is important in the analysis of

wave–vortex systems in smooth shear flows, indicating the

existence of vortex perturbations (Hau et al., 2015). As sug-

gested by Chagelishvili et al. (1997a), we introduce an aux-

iliary variable ξ = vx + γvz. By doing so, the system of

ODEs reduces by one equation, which can be reformulated

only in ξ using Eq.(4)

d2

dτ2
ξ +ω2(τ)ξ =−β (τ)W , (5)

with ω(τ) =
√

1+β 2(τ)+ γ2. Eq.(5) has the form of a

wave-equation with a source term on the right hand side,

proportional to W . It describes two types of disturbances:

(i) Acoustic wave SFHs, ξ (w), (W = 0 and non-zero group

velocity) which are described by the general solution of

the corresponding homogeneous equation; (ii) Vortex SFHs,

ξ (v), (W 6= 0 and zero group velocity) that originate from

the inhomogeneity, β (τ)W , and are associated with the par-

ticular solution. The vortex mode amplitude is proportional

to W , i.e., is zero when W = 0. The character of the shear

flow dynamics depends on the initially imposed pure vor-

tex or wave mode disturbance. While latter is to realize

straightforward (W = 0) and has been analyzed by Chagel-

ishvili et al. (1997a), the extraction of pure vortex modes is

not, as the Kovasznay decomposition does not hold (Gold-

stein, 2013). At the same time, the separation of the de-

scribed disturbance modes by the value of the PV is efficient

and has been widely used by the atmospheric community

(see e.g., McIntyre (2009) and references herein) to study

the generation of inertia–gravity waves (having zero PV)

by PV disturbances. Although the aperiodic vortex mode is

uniquely determined, the correspondence between a vortex

mode and a particular solution of the inhomogeneous equa-

tion is not unique. The evolution of vx and vz depends on

the wavenumber ratio γ , yet, the evolution of ξ is identi-

cal to the one of vx in the 2-D case, but with γ-dependent

frequency ω(τ).
We introduce the dynamical Mach number as

MD(τ)≡ A/(csk(t)) = M /(κ(τ)), which is a measure for

the compressibility of any SFH in time. The maximum

of MD, i.e., maximum compressibility characteristic, is

reached when the SFH crosses the kx-axis (line of ky = 0) at

τ∗ = β (0)/M ∗:

M
∗ ≡ max(MD(τ)) =

M
√

1+ γ2
. (6)

M ∗ defines the strength of the linear mode-coupling. For

MD ≪ 1 it becomes possible to determine vortex mode har-

monics in regions where β (0)≫ 1 in the manner suggested

by Hau et al. (2015). Here, the compressibility character-

istic of the vortex mode harmonic substantially diminishes

and the separation between vortex and acoustic wave modes

becomes possible. This enables us to study the generation

of wave mode perturbations by initially pure (void of acous-

tic wave) vortex modes.

We seek the smoothly monotonic vortex mode solution

in the spectral plane in some point (kx,ky(0)) with β (0)≫ 1

in the following asymptotic analytic form:

ξ (0) ≡ ξ (0)(0)+ξ (1)(0)+ . . .+ξ (n)(0)+ . . . . (7)

The zero-approximation term of Eq.(5) for large β (0) leads

to the neglect of the term including the second derivative

and, thus, gives

ξ (0)(τ) =
β (τ)

ω2(τ)
W (β (0),γ) . (8)

In the nonmodal approach this condition usually defines the

vortex mode. However, the impurity by waves, i.e., any os-

cillating behavior, can be minimized by taking into account

the corrections of the second derivative. The first correction

gives

ξ (1)(0) =−

[

1

ω2(τ)

d2ξ (0)(τ)

dτ2

]

τ=0

, (9)

which then generally leads to the following iterative steps:

ξ (n)(0) =−

[

1

ω2(τ)

d2ξ (n−1)(τ)

dτ2

]

τ=0

.

In fact, the first two terms of this series are a good approx-

imation to the exact numerical solution inside the adiabatic

region. Hence, we calculate ξ (0) for the vortex mode dis-

turbances by inserting Eqs.(8)-(9) into (7). From this also

the first derivative can be calculated, which is necessary to

recover vy and D.

In contrast to the oscillating and propagating wave

mode perturbations, vortex mode perturbations relate to

the smoothly monotonic, non-oscillating and, consequently,

non-propagating aperiodic part of the solution in any region

of the wavenumber space.

Finally, the auxiliary dependent variable ξ (τ) needs to

be split into the streamwise and spanwise velocity perturba-

tions in the adiabatic limit (Chagelishvili et al., 1997a), i.e.,

MD ≪ 1:

vx(0) = ξ (0)
1

1+ γ2
− γC , vz(0) = ξ (0)

γ

1+ γ2
+C .

(10)
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Figure 1: Dynamics of vx,vy,vz,D for M ∗ =
[0.05,0.4] from left to right for γ = 0.5, C = 0.

Here, vx and vz are defined up to a constant C, which mean-

ing is known from the solutions of the incompressible dy-

namics (Moffatt, 1967) and needs to be considered in the

analysis of the compressible case. In fact, the constant ac-

counts for the fact that the stream- and spanwise velocity

perturbations only occur independently from each other in

the derivatives of the considered system (3)-(4). Apart from

the derivatives, vx and vz only occur in the combination

ξ = vx + γvz. Therefore, the pure vortex solution initially

only fixes ξ (0) and, so, the values of vx(0) and vz(0) can be

arbitrary if (i) their combination gives the required value

of ξ (0) and (ii) derivatives of dvx/dτ and dvz/dτ in Eq.(3)

vary slowly and monotonically at β (0)≫ 1 (MD ≪ 1). The

remaining quantities can be calculated in terms of ξ . The re-

sults obtained by solving the system of ODEs (3) for vortex

mode harmonics as initial conditions with different values

of M ∗, γ and C is presented in the following section.

3 RESULTS
In comparison with its 2-D counterpart, the 3-D dy-

namics are more complex regarding the degrees of freedom

in the free non-dimensional parameters. Specifically, in 2-

D we only have to take into account the wavenumber-ratio

β (0) and M = A/(kxcs). This set of parameters is enlarged

by γ and the free parameter C, while the perturbation Mach

number changes to M ∗ = M /
√

1+ γ2.

In Fig.1 we present the dynamics of a single Kelvin

mode at different perturbation Mach numbers M ∗ =
[0.05,0.2,0.4] with γ = 0.5, β (0) = 10 and C = 0. The ab-

sence of any oscillating part in the solution for τ < τ∗ con-

firms the correct extraction of the aperiodic part as initial

conditions. The dynamics are comparable to the 2-D coun-

terpart and the critical time τ∗ = β (0)/M ∗ is a universal
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Figure 2: Dynamics of (vx,vy,vz,D) for M ∗ = 0.4,

β (0) = 10, C = 0 and γ = [0,0.5,1] (from light to

dark).

timescale for the appearance of linearly generated waves.

This phenomenon becomes visible by naked-eye for mod-

erate values of the perturbation Mach number by the ap-

pearance of high frequency oscillations, as in the 2-D case

(Chagelishvili et al., 1997b). The most eye-catching differ-

ence in the dynamics, compared to the limiting 2-D case,

lies in the fact that (i) the dynamics of the streamwise ve-

locity perturbations are no longer (point) symmetric about

the critical time, (ii) the appearance of an additional per-

turbation velocity (vz), and (iii) the ongoing amplification

of vortex as well as wave harmonics for τ > τ∗ (see also

(Moffatt, 1967; Chagelishvili et al., 2016)). The dynam-

ics of the shearwise velocity and density perturbations are

rather unaffected by the additional space-dimension.

We present the analysis of the dynamics of initially

pure vortex SFHs depending on γ = kz/kx in Fig.2 for the

primitive variables, where M ∗ = 0.4,β (0) = 10,C = 0 and

γ = [0,0.5,1]. The dynamics of the respective perturba-

tion quantities are presented superimposed onto each other.

Here the gray-scale varies from light to dark with increas-

ing value of γ . Firstly, the most striking difference in the

dynamics is found in the amplitude of the oscillations that

appear after the critical time, which indicates a reducing in-

fluence of the 3-D dynamics in contrast to 2-D. Secondly,

one recognizes the influence on the streamwise and span-

wise perturbation velocities. Of course the latter is absent

for γ = 0, the 2-D case.

As aforementioned, the exact solution of the incom-

pressible counterpart is well known and exhibits the free

parameter C (Moffatt, 1967), which allows some freedom

in the solution and has an impact on the energy growth of

the regarded Kelvin mode. To evaluate this, we solve the

system of ODEs (3) for a fixed γ and different values of C,

resulting in a change of the initial conditions of the stream-

wise and shearwise velocity perturbations, vx(0) and vz(0),
respectively:

v′x(0) = vx(0)− γC , v′z(0) = vz(0)+C , (11)

where the primed values are the new initial conditions, de-

pending on the choice of C. This change is best observed

in Fig.3. Here, the dynamics in the dependent variables is

presented for γ = 1, M ∗ = 0.4 and three different values of

C = [−0.5,0,0.5]. The dynamics in the shearwise velocity

and density perturbations remain unchanged throughout the
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Figure 3: Dynamics of (vx,vy,vz,D) for M ∗ = 0.4,

β (0) = 10, γ = 1 and C = [−0.5,0,0.5] (from light to

dark).

choice of C, whereas the values and thus, the further evolu-

tion of the streamwise and spanwise velocity perturbations

is shifted. In fact, a variation of C, although changing vx(0)
and vz(0), does not affect the wave generation process.

We follow a similar path as taken in Refs. (Chagel-

ishvili et al., 1997b; Hau et al., 2015) in order to uncou-

ple the dynamics of vortex and wave mode perturbations.

This analysis is of purely numerical nature (strictly speak-

ing non-physical but mathematical) and allows to under-

stand the different behaviors of vortex and wave modes in

the further dynamics. Although they are not distinguishable

inside the energy gaining region (|β | < 1), the mathemati-

cal separation is insightful. In Fig.4 we present the results of

the split quantities for M ∗ = 0.4,β (0) = 10,γ = 1,C = 0.

We summarize the main results of the splitting in the

following: (i) There is an abrupt emergence of waves from

vortices; (ii) The jumps that occurs in the evolution v
(v)
x and

v
(v)
z characterize the spontaneously generated wave mode.

(iii) The vortex and wave parts of the quantities evolve inde-

pendently from each other – vortex SFHs approach a fixed

state, whereas wave SFHs grow linearly in time for τ > τ∗

with the growth of |ω(τ)|, i.e., wave and vortex parts are

just superimposed onto each other; (iv) The PV W (see

Eq.4) equals to zero for the wave (w) parts, whereas it is

conserved for the vortex (v) parts. Moreover, the proposed

splitting allows to quantify the efficacy of the wave genera-

tion process by initially pure vortex SFHs. This is identified

by the jump occurring in the vortex part of the split depen-

dent variables at τ = τ∗ and the thereby generated wave

SFH. The jump naturally occurs in the derivatives of the re-

maining quantities. Thus, we define the efficacy η (can be

larger than one) as the ratio of vortex to wave energy:

η ≡
E
(w)
k

(τ∗+)

E
(v)
k

(τ∗−)
=

|v(w)2

(τ∗+)|+ |D(w)2

(τ∗+)|

|v(v)
2

(τ∗−)|+ |D(v)2

(τ∗−)|
, (12)

with τ = τ∗± 0 ≡ τ∗±. In Fig.5(a) the efficacy of the wave

generation phenomenon in a plane 3-D shear flow is illus-

trated. In the 3-D case the effective Mach number is reduced

by the factor
√

1+ γ2, which reduces the efficiency of the

wave generation, thus, 2-D SFHs are more efficient. In

Fig.5(b) the dependence of η on C is presented. The linear

mechanism of wave generation by vortex SFHs is strongest

for 2-D perturbations for C = 0. While, for 3-D harmonics

(γ 6= 0) the strongest emergence of linearly generated waves

is shifted away from C = 0 depending on γ . The direction

of the shifting is defined by the sign of γ .

Due the peculiarity of the wave generation process –

this takes place just at times when vortex SFHs cross the

axis of ky = 0 – initially, all generated wave SFHs have zero

shearwise wavenumbers. This leads to a specific, regular

wave front and trajectory of the linearly generated waves.

We estimate this trajectory in the WKB approximation. Al-

though the rays quantitatively somehow differ from the ini-

tial stage of the generated wave propagation for moderate

Mach numbers, it has been shown that they reliably pre-

dict the linear wave propagation phenomenon in a 2-D shear

flow (Hau et al., 2015).

We define the total wave velocity V
T by the sum of the

wave’s group and base flow velocity

V
T = V

G +V0 = V
G +(M ŷ,0,0) . (13)

The coordinates of the emitted wave-fronts are given by

x̂(τ) =

∫ τ

τ∗
dτ ′[V G

x̂ (τ ′)+M ŷ(τ ′)] ,

ŷ(τ) =
∫ τ

τ∗
dτ ′V G

ŷ and ẑ(τ) =
∫ τ

τ∗
dτ ′V G

ẑ .

(14)

The time-dependent wave group velocity V
G can be cal-

culated via the definition for the instant frequency ω =
±
√

1+β 2(τ)+ γ2, representing the spectral characteris-

tics of acoustic wave SFHs. So, we write for the non-

dimensional group velocity V
G:

V
G =

(

±
1

ω(τ)
, ±

β (τ)

ω(τ)
, ±

γ

ω(τ)

)

. (15)

At τ = τ∗, β (τ∗) = 0 and the group velocity is directed in-

side the (x,z)-plane and two rays are emitted in opposite di-

rections inside this plane. These properties only gain impor-

tance for wave packets, when the ray theory (i.e., the WKB

approximation) makes sense. Accordingly the rays can be

calculated from relation (15). We omit the presentation of

the full equations here for the sake of brevity. Rather, the

ray trajectories are illustrated in Fig.6 for M = 0.1, γ = 0.5
and β (τ∗) = 0, emerging from one single point, for the sake

of simplicity, neglecting the size of the emitting area. The

trajectories are determined by the signs of the shear param-

eter and the wavenumbers. In our case the shear parameter

is assumed to be positive, M > 0, thus, β (τ)< 0 at τ > τ∗

and asymptotically the inclination is zero:

lim
τ→∞

dŷ

dx̂
= lim

τ→∞

dŷ(τ)/dτ

dx̂(τ)/dτ
= 0 . (16)

The two rays turn in y-direction, as β (τ) < 0 (correspond-

ingly V G
y (τ) 6= 0) and are additionally carried backwards

by the mean flow, propagating antisymmetrically in time

(Eq.(15)). As β (τ∗) = 0 for all linearly generated waves,

V
G is directed inside the (x,z)-plane at the moment of gen-

eration and two rays are emitted in opposite directions in-

side this plane. This peculiarity is inherent for linearly gen-

erated waves, whereas there is a broad spectrum of nonlin-

early generated wave harmonics in ky for each kx. It follows

4
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Figure 4: Dynamics of (vx,vy,vz,D), their vortex (v) and wave parts (w) for an initially pure vortex disturbance

(v
(w)
x (0),v

(w)
y (0),v

(w)
z (0),D(w)(0) = 0) for M ∗ = 0.4,β (0) = 10,γ = 1,C = 0. An abrupt emergence of waves

from the initial vortex mode at τ = τ∗ is observed. The amplitude of the generated wave v
(w)
x (τ∗) smooths the

jump appearing in the aperiodic mode of vx,vz.
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wavenumber ratio γ = kz/kx, C = 0 and (b) on the free parameter C, where M ∗ = 0.4, while γ = [−1,0,1].
The wavenumber ratio β = ky(0)/kx is always β = 10.

that each ray trajectory of nonlinearly generated waves is

different, due to the broad spectrum of wavenumbers in ky

and it is impossible to obtain a comparable wavenumber-

relation as in the linear case. The difference between linear

and nonlinearly generated waves manifests itself in an irreg-

ular front and an almost omni-directivity (however, weak-

ened by the shear) of nonlinearly generated sound, thus,

providing a well distinguishable counterpart to the linear

one. These observations match with the ones for a develop-

ing shear layer (Avital et al., 1998) and the two-noise source

model in jets (Tam, 1995).

Although not presented in this place, we stress that the

mechanical picture of the transient growth of vortex mode

harmonics that has recently been constructed by Chagel-

ishvili et al. (2016) by analyzing the dynamics of a sin-

gle vortex SFH (with ky(0)/kx > 0) in an unbounded, in-

compressible and inviscid base flow with constant shear of

velocity U = (Ay,0,0), can naturally be extended to the

5
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Figure 6: Illustration of the trajectories of a linearly

generated wave (red and dark red) together with their
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At the moment of its generation β (τ∗) = 0. The fol-

lowing parameters are chosen for the visualization:

M = 0.1, γ = 0.5.

compressible dynamics. Here, the widely accepted way

of investigating fluid or plasma instabilities was applied,

namely, introducing (virtual) fluid particles that undergo

a small spatial shift in the flow and subsequently analyz-

ing the resulting variance of the forces acting on those. It

was shown that the dynamically generated pressure pertur-

bation field governs the process of transient growth. This

dynamics involves (i) the formation of the pressure per-

turbation field in the shear flow that can be understood as

the result of counter-moving neighboring sets of fluid par-

ticles in the flow; (ii) the feedback of the pressure field on

the dynamics of fluid particles. By analyzing the compres-

sion of the medium (i.e., a continuous rise of the pressure

perturbations) due to counter-moving neighboring sets of

fluid particles in the flow and analyzing the feedback of the

generated pressure field on the movement of the fluid parti-

cles, the finite value of the sound speed in the compressible

case is taken into account. This causes a delay of the ad-

justment of the fluid particles velocity to the pressure field.

Hence, the velocity perturbation does not instantaneously

follow the turning of the maximum pressure line, always

lagging behind. This lag is crucial in the process of wave

generation and manifests itself in a decompression process

for t > t∗.

The presented investigation reveals that the linear

mechanism of the acoustic wave generation by vortex mode

perturbations in 3-D follows similar dynamics as in the

2-D, despite the free parameter C. At the critical time

t = t∗ ≡ ky(0)/kx, the vortex part fully adopts the potential

vorticity and in the down-shear tilted phase, ky(t)/kx < 0,

evolves aperiodically. At the same time, the wave part has

zero potential vorticity and further exhibits an oscillating

nature, being also down-shear tilted. However, in the 3-

D case the effective Mach number is reduced by the factor
√

1+ γ2. This reduces the efficiency of wave generation,

which maximum depends on the value of C, and stresses

the predominance of 2-D harmonics in the process of linear

acoustic wave generation.
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