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ABSTRACT

In a soft-walled channel, there is a dynamical insta-

bility due to the coupling between the fluid flow and the

wall dynamics which leads to a transion to turbulence.

The transition Reynolds number is lower than Re=1000 for

a rigid channel if the wall elasticity is sufficiently small.

The transition Reynolds number depends on the parameter

Σ = (ρGh2/η2), where ρ and η are the fluid density and

viscosity, G is the shear modulus of the wall material and

h is the channel height. The characteristics of the flow af-

ter transition are studied using Particle Image Velocimetry

(PIV) in a rectangular channel with walls made of polyacry-

lamide gel, in which one wall is fixed to a rigid substrate and

the other wall is unconstrained. The channels have width

about 1.3 cm, height (smallest dimension) about 0.6 mm

and the length of the channel is about 14 cm. The chan-

nels are fabricated with soft polyacrylamide gel with shear

modulus about 0.75 kPa. There is a soft-wall transition at a

Reynolds number below 1200, where the flow is symmetric

about the centerline, and the wall fluctuations are primarily

tangential to the surface, and the velocity statistics are in-

dependent of downstream distance. As the Reynolds num-

ber is increased, there is a second wall-flutter transition at

the top unrestrained surface alone, where the profiles of the

mean and root-mean-square velocities are larger near the

top surface. Downstream traveling waves, which decrease

in amplitude, are observed at the top surface with fluctua-

tions both normal and tangential to the surface. The von

Karman plots of the near-wall velocity profiles indicate that

there is no discernible viscous sub-layer for (yv∗/ν) as low

as 2, where y is the distance from the wall, v∗ is the fric-

tion velocity and ν is the kinematic viscosity. There is clear

evidence of a logarithmic layer for soft-wall turbulence, but

the von Karman constants are very different from those for

the flow in a hard-walled channel. However, there is no ev-

idence of a logarithmic layer after the wall-flutter transition

as the Reynolds number is further increased.

INTRODUCTION

Linear stability studies of the flow past model flexible

surfaces, usually considered as spring-backed plates, have

found different modes of instability. In the initial studies of

Benjamin (1960, 1963); Landahl (1962), these were clas-

sified into three types — the class A modes which are the

rigid-wall Tollmien-Schlichting instability modified by sur-

face flexibility, the class B modes which have wave speed

close to the surface waves on the medium, and the class

C or traveling wave flutter which is similar to the Kelvin-

Helmholtz instability. Subsequently, Carpenter & Garrad

(1985) and Carpenter & Garrad (1986) modified the clas-

sification to include the class B and class C modes into

a category called flow-induced surface instabilities, which

are qualitatively different from the Tollmien-Schlichting

modes. Class A modes are stabilised by surface damp-

ing, and class B modes could be destabilised by damping

in the surface. Moreover, the coalescence of the Tollmien-

Schlichting modes and the traveling wave flutter could re-

sult in a powerful static divergence instability which could

destabilise the flow. Thus, the linear stability studies sug-

gested that surface compliance stabilises some modes of in-

stability but destabilises other modes, and so surface com-

pliance is unlikely to result in transition delay.

There have been relatively few numerical studies on

turbulence modification due to the dynamical interaction

between the fluid turbulence and a flexible surface. The

studies of Xu et al. (2003) and Rempfer et al. (2003) on

a spring-backed wall model using Direct Numerical Simu-

lations reported relatively modest turbulence modification

due to the wall motion. There does not seem to be any work

on the turbulence modification due to a soft wall modeled

as a visco-elastic continuum.

The pioneering experiments of Hansen & Hunston

(1974), Hansen & Hunston (1983) and Gad-el Hak et al.

(1985) have reported the ‘static divergence’ instability, a

hydro-elastic instability due to the coupling between the

fluid flow and a compliant surface in different experimen-

tal geometries. Hansen & Hunston (1974) considered a ro-

tating disk geometry, where a disk coated with a compli-

ant surface was rotated in a tank, while Hansen & Hunston
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(1983) examined the boundary-layer flow over a flat plate

coated with a compliant material. In the case of Gad-el Hak

et al. (1985), a flat plate partially coated with a compliant

surface was towed in a tank of water. Many of the important

observations in these experiments are similar, though there

are some differences. All studies report the appearance of

waves on the compliant surface, when the dimensionless pa-

rameter V (ρ/G)1/2 exceeds a critical value, where V is the

free stream velocity relative to the solid surface, G is the

shear modulus of the compliant surface, ρ is the density,

and (G/ρ)1/2 is the propagation velocity of shear waves

in the solid. Hansen & Hunston (1983) reported the on-

set of waves on the surface both for turbulent and laminar

flows. Gad-el Hak et al. (1985) observed an instability only

for turbulent boundary layer flows; the instability was not

observed for laminar flows even when the free stream ve-

locity was two times the shear wave velocity. The waves

were nearly stationary in the reference frame of the solid,

and the wave amplitude was found to be larger than the vis-

cous sub-layer thickness at the surface. The surface waves

thereby increased the drag force in a manner similar to static

surface roughness elements. Gad-el Hak et al. (1985) also

reported that the heights of the large eddies near the surface

were significantly larger when there were static divergence

waves on the compliant surface.

The earliest studies on the transition in internal flows

bounded by soft walls was carried out by Lahav et al. (1973)

and Krindel & Silberberg (1979), who reported a reduc-

tion in the transition Reynolds number in comparison to the

value of 2100 for a rigid tube. They also found that the

transition Reynolds number decreased as the wall elastic-

ity modulus decreased, and the transition appeared to be

continuous, in contrast to the discontinuous transition in

the flow through rigid tubes. Following this, linear stabil-

ity studies were carried out (Kumaran (2000, 2003, 2015);

Shankar (2015)) on the flow through soft tubes and chan-

nels, where the soft wall was modeled as a viscoelastic

solid, and continuity of velocity and stress were imposed at

the fluid-solid interface. The linear stability studies found

different modes of destabilisation in both the high and low

Reynolds number limits. The transition Reynolds num-

ber depends on the ratio of elastic and viscous stresses,

Σ = (ρGR2/η2), where, R is the tube diameter/channel

height, G is the shear modulus of wall material, η and

ρ are the fluid viscosity and density respectively. At low

Reynolds number, even in the absence of inertia, there is an

instability when the parameter (V η/GR) exceeds a critical

value (Kumaran et al. (1994); Kumaran (1995); Shankar &

Kumar (2004); Gkanis & Kumar (2003, 2005); Chokshi &

Kumaran (2008)). The mechanism is the transfer of energy

from the mean flow to the fluctuations due to the shear work

done at the fluid-solid interface, and the transition Reynolds

number is proportional to the parameter Σ in this case. At

high Reynolds number, two different modes of instability

have been identified. In the case of the inviscid instability

(Kumaran (1996); Shankar & Kumaran (1999, 2000); Gau-

rav & Shankar (2009, 2010)), qualitatively similar to that in

a rigid channel, an internal critical layer of thickness Re−1/3

within the flow where viscous stresses are important. The

transition Reynolds number is influenced by the wall elas-

ticity, and it scales as Σ1/2. There is another mode of desta-

bilisation not present in the flow past rigid surfaces, called

the wall mode instability, where the viscous forces are im-

portant in a wall layer of thickness Re−1/3 at the wall (Ku-

maran (1998); Shankar & Kumaran (2001, 2002); Chokshi

& Kumaran (2009)). The mechanism of destabilisation is

the transfer of energy from the mean flow to the fluctua-

tions due to the shear work at the surface, and the transition

Reynolds number scales as Σ3/4.

Experiments on the flow of very viscous silicone oil

over a polymer gel have verified the low Reynolds num-

ber instability (Kumaran & Muralikrishnan (2000); Mura-

likrishnan & Kumaran (2002); Eggert & Kumar (2004);

Shrivastava et al. (2008)). The wall mode instability at

high Reynolds number has also been verified in experiments

(Verma & Kumaran (2012, 2013)). The transition Reynolds

number in experiments is in agreement with theoretical pre-

dictions, if the wall deformation due to the applied pressure

gradient, and the consequent change in the mean velocity,

are incorporated in the analysis. The transition Reynolds

number in a flexible tube of diameter about 1 mm is found

to be as low as 500, and that in a channel of height about

100 µm is as low as 200. The flow after transition has

also been studied (Srinivas & Kumaran (2015)), and results

indicate several similarities and differences with the turbu-

lent flow in a rigid channel. There is a transition from a

parabolic profile to a profile that is flatter at the center and

steeper at the walls at the transition Reynolds number, and

a sharp increase in the magnitudes of the fluctuating veloci-

ties. The stream-wise root mean square velocity, in particu-

lar, exhibits the characteristic maximum near the wall. The

important differences include the asymmetry in the fluctu-

ating velocities, where the root mean square velocity at the

soft surface is much larger than that near the hard surface,

the apparent non-zero value of the Reynolds stress at the

wall, and the detection of wall fluctuations at the transition

Reynolds number. Though a viscous sub-layer was not de-

tected in the experiments, possibly due to the lack of resolu-

tion, a logarithmic layer was observed. However, the extent

of the logarithmic layer, when expressed in wall units, was

much smaller than that in a rigid channel, and the von Kar-

man constants were also very different. The turbulent veloc-

ity fluctuations at a Reynolds number in the range 250-400

in a soft-walled channel, when scaled by suitable powers of

the mean velocity, are larger than those in a rigid channel in

the Reynolds number range 5000-20000.

EXPERIMENTAL METHODS

A rectangular bore is fabricated in a block of polyacry-

lamide gel, using the procedures used for outlined in Verma

& Kumaran (2012) for a soft tube; the only difference is

that a rectangular template is used instead of a tubular glass

template. The rectangular bore has a width of about 1.3

cm and length about 14 cm and height (smallest dimension)

of about 0.6 mm. Polyacrylamide gel is used, instead of

polydimethylsiloxane (PDMS) that has been used in ear-

lier studies (Verma & Kumaran (2012)), because it has a

much lower shear modulus, and the shear modulus can be

decreased by reducing the concentration of cross-linker dur-

ing fabrication. The gel block is fixed to a rigid substrate at

the bottom, while the top surface is unrestrained. Gels with

two different shear moduli were fabricated. The gel with

shear modulus about 0.75 kPa was used for fabricating the

‘soft’ channels, where the effect of fluid-wall coupling on

transition and turbulence was studied. In order to provide

a reference for the experiments, a gel with shear modulus

15.9 kPa was also fabricated; the elasticity modulus of this

gel was sufficiently high that the wall flexibility did not af-

fect the flow dynamics up to a Reynolds number of about
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Figure 1. Schematic, not to scale, of the top view (a), cross

section of the undeformed channel (b) and the deformed

channel (c). In sub-figures (b) and (c), the laser sheet used

for the PIV measurements is shown, and the images are

taken from the side.

900, which is the maximum Reynolds number that could be

attained in the experiments.

A schematic of the tube configuration is shown in fig-

ure 1. The length of the test section, where the measure-

ments are made, is about 14 cm. The walls of the channel

in the soft section are made with shear modulus 0.75 kPa.

Upstream of the test section, there is a development section

of length about 13 cm where all four walls are made of hard

gel with shear modulus about 15.9 kPa, so that there are no

disturbances in the fluid when it enters the soft section. The

flow is laminar in the hard section in all the experiments,

and the flow conditioning in the hard section results in a

fully developed parabolic profile at the entrance to the soft

section. The configuration used for the experimental mea-

surements is shown in figure 2. The PIV measurements are

carried out using an IDT PIV system with an Nd-Yag laser

(Solo-III, New Waver Research), laser sheet generating op-

tics, and a SharpVisionTM 1500-EX CCD imager with a

resolution of 1360× 1036 pixels and a framing rate of 15

image pairs per second. The laser sheet is directed down-

wards along the central plane of the channel in the span-

wise direction, as shown in figure 1 (b) and (c), and in figure

2. Glass beads of diameter 15-20 µm are used as seed par-

ticles. The measurements are carried out at a location close

to the exit of the channel, as shown in figure 1 (a). The algo-

rithms for determining the mean and root mean square ve-

locities, and the validation, are provided in Srinivas & Ku-

maran (2015). Since the diameter of the glass beads is up to

20 µm, it is not possible to obtain results within a distance

of about 20 µm from the walls of the channel. Therefore,

we do not extrapolate the results for the fluctuating veloc-

ities to with 20 µm of the channel. Where the mean ve-

locities are shown, they are extrapolated. In the co-ordinate

system used, the flow is along the x direction, the vertical

cross-stream dimension y is along the smallest channel di-

mension, and z is the span-wise direction along the width of

the channel.

When there is flow through the channel, there is chan-

nel deformation and an expansion in height. While the ex-

pansion in height could be significant, from about 0.6 mm

to about 0.8 mm, the slope of the wall is small, less than

about 1% in all our experiments. Due to this, the laminar

velocity profile does not differ from a parabolic profile by

more than 2%. The Reynolds number is defined on the basis

Figure 2. Configuration used for the velocity measure-

ments.

of the flow rate and the width of the channel,

Re =
ρQ

Wη
(1)

where ρ and η are the fluid density and viscosity, Q is the

flow rate and W is the channel width, which is 1.3 cm from

figure 1. This definition reduces to the usual definition of

the Reynolds number, Re = (ρ v̄xh/η), where v̄x is the aver-

age velocity and h is the channel height, for a rigid channel.

However, equation 1 has the advantage that it is independent

of channel height, and so it can be defined without ambigu-

ity even when there is channel deformation.

RESULTS
The experimental measurements reveal that there are

two different transitions in a soft-walled channel, both of

which are at Reynolds number lower than the value of about

1000 for the transition in a hard-walled channel. These evo-

lution of the mean velocity profile with an increase in the

Reynolds number is shown in figure 3. The mean velocity

profiles are in agreement with the parabolic velocity profile

when the Reynolds number is less than about 300. When

the Reynolds number exceeds 300, there is a distinct shift

from a parabolic profile to a profile that is flatter at the cen-

ter and steeper close to the walls. As the Reynolds num-

ber is increased, there is a second qualitative change in the

form of the mean velocity profile. When the Reynolds num-

ber exceeds about 550, there is a distinct asymmetry in the

mean velocity profile; the maximum of the velocity profile

is closer to the top (unrestrained) wall in comparison to the

bottom (fixed) wall. The two distinct transitions are also

observed in the root mean square of the stream-wise fluctu-

ating velocity v′x. The level of fluctuations is low and fea-

tureless for Reynolds number less than about 300, but the

profile of v′x develops the characteristic near-wall maximum

when the Reynolds number exceeds 300. As the Reynolds

number is further increased, there is a distinct asymmetry

when the Reynolds number exceeds 550, and the maximum

near the top wall is significantly higher than that near the

bottom wall.

Thus, the fluid velocity profiles indicate the presence

of two distinct transitions, the soft-wall transition which is

similar to that observed in Verma & Kumaran (2013) and

Srinivas & Kumaran (2015), where there is a significant

increase in the amplitude of the velocity fluctuations, but

the profiles of the mean and the root mean square velocities

are symmetric. There is no visible interface motion perpen-

dicular to the surface, but motion tangential to the surface
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Figure 3. The mean velocity v̄x as a function of the cross-

stream distance y at Reynolds number 295 (◦), 335 (△), 467

(∇), 546 (⊳), 604 (⊲), 734 (⋄). The bottom wall is located at

y = 0, and the location of the top wall at different Reynolds

number is shown by the dashed lines at the right.

was detected, and as in the study of Srinivas & Kumaran

(2015), there was a discontinuous increase in the amplitude

of the fluctuations tangential to the surface at the transition

Reynolds number. At the second ‘wall flutter’ transition,

the velocity profiles are asymmetric, with the mean veloc-

ity larger near the top (unrestrained) boundary in compar-

ison to the bottom (fixed) boundary. The velocity fluctua-

tions are also found to be larger at the top boundary. In this

case, there are visible downstream traveling waves at the top

boundary observed in the experiments, and the amplitude of

these waves decreases with downstream distance.

There are also some other unusual features in the pro-

files of the mean and root mean square velocities, 3 - 5.

The mean velocity does extrapolate to zero according to the

no-slip boundary condition at the two walls. However, the

behaviour of the stream-wise root mean square velocity at

the wall is not clear in figure 4. This velocity could be ex-

trapolated to zero, while it could also be extrapolated to a

non-zero value. Due to the lack of resolution in the near-

wall region, it is not possible to determine the exact nature

of the velocity fluctuations at the wall. However, the figure

5 seems to indicate that the Reynolds stress is non-zero at

the wall — it is difficult to extrapolate the curves in figure 5

to zero Reynolds stress at the wall. Thus, it appears that the

wall fluctuations do pay an important role in the generation

of turbulent fluctuations. As shown in Srinivas & Kumaran

(2015), the energy production rate has a maximum at the

wall itself, rather than at a location close to the wall. Figure

5 suggests that the production of turbulent energy is due to

the wall fluctuations, rather than the near-wall bursting of

eddies.

The von-Karman plots of (v̄x/v∗) vs. (yv∗/ν) are

shown in figure 6. Here, the friction velocity v∗ =
(τw/ρ)1/2, where τw is the wall shear stress which includes

the viscous stress and the Reynolds stress. Figure 6 shows

that the mean velocity profile is linear close to the wall for

a laminar flow at Re = 295. After the soft-wall transition,

0 0.2 0.4 0.6

y (mm)

0

0.1

0.2

0.3

0.4

0.5

v
x
’ 
(m

/s
)

Figure 4. The root mean square of the stream-wise fluctu-

ating velocity v′x as a function of the cross-stream distance

y at Reynolds number 295 (◦), 335 (△), 467 (∇), 546 (⊳),

604 (⊲), 734 (⋄). The bottom wall is located at y = 0, and

the location of the top wall at different Reynolds number is

shown by the dashed lines at the right. The dashed curves

show the parabolic velocity profiles with the same average

velocity as the experimental profile.

there is no discernible viscous sub-layer with a linear veloc-

ity variation for (yv∗/ν) as low as 2. However, in the range

3 < (yv∗/ν) < 20, there is a visible logarithmic layer after

the soft-wall transition for Reynolds number greater than

about 300. The von Karman constants are, however, very

different from those for the flow in a rigid channel. As the

Reynolds number is increased, we do not observe the log-

arithmic layer after the wall-flutter transition at a Reynolds

number of about 550. Thus, a logarithmic layer is observed

only when there is soft-wall transition; there is no logarith-

mic layer either at lower Reynolds number for a laminar

flow, or at higher Reynolds number after the wall flutter

transition.

Finally, we note that the wall flutter transition is ob-

served only at the top unrestrained surface, and not at the

bottom fixed surface. If the top surface is fixed to a rigid

substrate, the soft-wall transition is still observed at the

Reynolds number reported here, but the wall flutter tran-

sition is no longer observed. Thus, the wall flutter transition

appears to be independent of the restraining conditions at

the outer surface of the gel, but the soft-wall transition is

independent of the outer restraining conditions.

CONCLUSIONS
Our experimental study has shown that there are two

distinct transitions in the flow through a channel with soft

walls, both at a Reynolds number lower than the hard-

wall laminar-turbulent transition Reynolds number of about

1000.

1. The soft-wall transition, similar to the transition ob-

served in microchannels at Reynolds number as low as

200 (Srinivas & Kumaran (2015); Kumaran & Bandaru
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Figure 5. The Reynolds stressper unit mass 〈v′xv′y〉 as a

function of the cross-stream distance y at Reynolds number

295 (◦), 335 (△), 467 (∇), 546 (⊳), 604 (⊲), 734 (⋄). The

bottom wall is located at y = 0, and the location of the top

wall at different Reynolds number is shown by the dashed

lines at the right.

(2016)).

2. The wall-flutter transition, which shares many of the

features of the hydroelastic instability (Hansen & Hun-

ston (1974, 1983); Gad-el Hak et al. (1985)).

Both of these transitions have characteristics that are dis-

tinct from each other, and also distinct from those for the

hard-wall transition.

Soft-wall transition
The most conspicuous feature after the soft-wall tran-

sition is the presence of discernible wall motion tangential

to the surface in both the stream-wise and the span-wise di-

rections, but no detectable wall motion perpendicular to the

surface. This is accompanied by a rather large increase in

the root mean square of the fluctuating velocities in both the

stream-wise and wall-normal directions. As observed for

the flow in a micro-channel in Srinivas & Kumaran (2015),

the root mean square velocities appear to be non-zero at the

wall when extrapolated. The Reynolds stress is certainly

non-zero at the wall, indicating that the wall motion plays a

significant role in generating fluid velocity fluctuations. The

profiles of the velocity moments after the soft-wall transi-

tion are symmetric about the center line, indicating that the

boundary conditions at the outer boundary of the soft wall

are not relevant for the flow or wall dynamics — this im-

plies that the displacement fluctuations penetrate only to a

finite depth within the soft wall. (It should be noted that the

wall thickness, about 7 mm, is much larger than the chan-

nel height). The flow characteristics are also independent

of downstream location after a distance of about 5 cm from

the start of the test section.

Wall-flutter transition
As the Reynolds number is increased, there is a wall

flutter transition, in which there is a significant increase in

1 101 102

(y v* / ν)

0

5

10

(v
x−
/v

*)

Figure 6. The von Karman plot of the scaled mean ve-

locity (v̄x/v∗) as a function of the scaled distance from

the wall (yv∗/ν) at Reynolds number 295 (◦), 335 (△),

467 (∇), 546 (⊳), 604 (⊲), 734 (⋄). Here, y is the dis-

tance from the wall, v∗ = (τw/ρ)1/2 is the friction veloc-

ity and ν is the kinematic viscosity. The dashed curve on

the left is (v̄x/v∗) = (yv∗/ν), the dashed line on the right is

(v̄x/v∗) = 3.45log (yv∗/ν)−1.8.

the amplitude of the motion of the top (unrestrained) wall,

and the displacement fluctuations parallel and perpendicu-

lar to the surface are comparable in magnitude. There is no

normal motion detected, and there is no significant increase

in the tangential wall fluctuations, at the bottom wall. The

mean velocity is not symmetric about the center line of the

channel, and the velocity maximum is closer to the top wall.

The maximum in the stream-wise root mean square fluctuat-

ing velocity close to the top wall is significantly higher than

that close to the bottom wall. The wall displacement and

fluid velocity amplitudes also decrease with downstream

distance, and the disturbances are in the form of traveling

waves starting at the entrance to the soft section and de-

creasing in amplitude as they progress downstream. It is

further found that the fluctuation amplitudes also do not in-

crease monotonically with Reynolds number; the amplitude

appears to first increase and then decrease indicating that

this could be a resonance phenomenon.

The authors would like to thank the Department of

Science and Technology, Government of India for finan-

cial support. This work forms a small portion of a more

comprehensive study of the flow through soft channels with

different dimensions and elasticity moduli which is under

consideration in J. Fluid Mech.
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