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ABSTRACT
Clustering of coherent fine-scale structures in a turbulent mix-

ing layer has been analyzed by a direct numerical simulation (DNS)
data at Reλ ' 250. The coherent fine-scale structures are extracted
based on the second invariant of the velocity gradient tensor and the
vorticity vector. Their characteristics are consistent with the lower
Reynolds number data. The clustering is evaluated by the number
density of coherent fine-scale eddies. The large-scale structures are
extracted by low-pass filtering velocity data. The correlations be-
tween the number density and large-scale turbulence characteristics
such as the enstrophy, the strain rate magnitude and the enstrophy
amplification rate are investigated. The enstrophy is more correlated
with the number density compared to the strain rate and the enstro-
phy amplification rate. Furthermore, the alignments of the vorticity
vector and the eigenvectors of the large-scale strain rate tensor are
evaluated. These alignment are computed by imposing a condition
on the number density or the strain rate magnitude. The intense
strain rate indicates the strong preferential alignment between the
vorticity and the eigenvectors. On the other hand, the alignment be-
comes weaker in the high number density region of the fine-scale
eddies. Finally, the inter-scale energy transfer is evaluated from the
energy transfer between grid and subgrid scales. By definition, the
significant positive correlation is observed in the magnitude of the
strain rate and the inter-scale energy transfer while it is not much
apparent with the number density.

INTRODUCTION
In the classical picture of turbulence, the kinetic energy is in-

jected at a large-scale, and it is transferred through the inertial sub-
range down to small dissipative scales. This is hypothesized in
physical space such that a large-scale eddy is broken into smaller
ones until the energy is dissipated into heat. Such small-scale tur-
bulence structures responsible for dissipation are represented by ed-
dies with the most probable diameter of 8η (Tanahashi et al., 1997,
2001; Wang et al., 2007), and they are known as worms (Jiménez
et al., 1993). These small-scale turbulence structures exhibit uni-
versal characteristics in different flow types (Tanahashi et al., 1997,
2001, 2004; Wang et al., 2007). On the other hand, it is not straight-
forward to define turbulence structures responsible for the energy
cascade in physical space. Leung et al. (2012) identified struc-
tures of different scales by using band pass filtering, and found that
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the energy cascade process is relevant to the vortex stretching by
a slightly larger scale, which is consistent with the classical pic-
ture of energy cascade. They have also pointed out that small-scale
structures tend to form clusters around a larger structure. The re-
lation between the coherent fine-scale eddy cluster and the energy
cascade in a homogeneous isotropic turbulence has been investi-
gated by Tanahashi et al. (2008). Clustering of fine-scale eddies in
the near wall region of the turbulent channel flow has also been re-
vealed by Kang et al. (2007). Clustering of small-scale structures
has been also found by Ishihara et al. (2013). The scale of the clus-
ter is significantly larger than the Kolmogorov length scale and it
has an order of the integral length scale.

The strain rate and the vorticity are two fundamental quanti-
ties to describe the dynamics of turbulence. Buxton et al. (2011)
analyzed their interaction based on the transport equations of the
enstrophy and the magnitude of the strain rate tensor. The key quan-
tity is that the production term in the enstrophy equation, ωiSi jω j ,
where ωi = εi jkWjk is the vorticity vector, Si j is the strain rate
tensor and Wi j is the rotation rate tensor. Fiscaletti et al. (2016)
investigated scale interactions by amplitude modulation analyses.

The present study analyzes the large-scale clustering of coher-
ent fine-scale structures using a numerical database of a temporally
developing turbulent mixing layer. A DNS at the turbulent Reynolds
number Reλ ' 250 has been performed. The degree of clustering
fine-scale turbulence is measured by the number density of the co-
herent fine-scale eddies. The large-scale strain and vorticity fields
are obtained by applying low-pass filtering. The relation between
the large-scale structures of the strain and the vorticity field, and
clustering of the fine-scale turbulence structures is quantified.

DNS OF A TURBULENT MIXING LAYER
A DNS of a temporally developing turbulent mixing layer has

been performed. The solver was originally developed and reported
in our previous study (Tanahashi et al., 2001). Variables in the
streamwise and spanwise directions are expanded into Fourier se-
ries and into sine/cosine series in the transverse direction. The time
integration is conducted by the low-storage third-order Runge-Kutta
scheme. The boundary conditions are periodic in the streamwise
and spanwise directions, and free-slip in the transverse direction.
The initial mean velocity distribution is given by a hyperbolic tan-
gent profile: ũ(y) = 0.5tanh (2y), and the small random perturba-
tions are superposed. The dimensions of computational domain
are set to be 4Λ× 6Λ× 8/3Λ, where Λ is the most unstable wave-
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Figure 1. PDF of the diameter of the coherent fine-scale eddy.

length. The Reynolds number based on the initial vorticity thickness
(Reω,0) is 7200. The number of grid points is 1728×2593×1152.
The simulation has been carried out until the sub-harmonic mode
had been fully developed (t = 150). The velocity field at t = 135 is
used for the present analyses. The turbulent Reynolds number Reλ
reaches approximately 250 in the fully developed state. It is noted
that Reλ achieved is among the highest in this type of flow to date.
The computation has been conducted using the NEC SX-ACE sys-
tem at Tohoku University, consuming 144 cores and about 21 ×103

CPU hours.
The fundamental statistics such as the mean velocity and the

velocity fluctuations of the present simulation exhibit a good agree-
ment with those of the previous study in the literature (for exam-
ple, Rogers & Moser (1994)). The resolution is confirmed that
kmaxη ∼ 1.5, where kmax is the maximum wavelength and η is the
Kolmogorov length scale. These results confirm that the present
DNS gives a reliable database of a turbulent mixing layer.

Coherent fine-scale eddies are extracted using the method sim-
ilar to our previous studies (Tanahashi et al., 1997, 2001). It
is based on the second invariant of the velocity gradient tensor
Q = (1/2)(Wi jWi j − Si jSi j ), and the axis of the eddy is defined by
the vorticity vector. 1.36 million fine-scale eddies are extracted in
a snapshot at t = 135. Figure 1 shows the probability density func-
tion (PDF) of the diameter of the coherent fine-scale eddy. It is
confirmed that the present result is consistent with the data at lower
Reynolds numbers in our previous studies (Tanahashi et al., 1997,
2001; Wang et al., 2007).

To extract large-scale turbulence structures, the velocity field
is low-pass filtered using a Gaussian kernel with a filter width of
∆. In the present paper, results with the filter width at ∆ = 160η is
shown. This filter width can be compared with the integral length
scale l = 502η and the Taylor micro scale λ = 33.1η.

FINE-SCALE EDDY CLUSTER AND TURBULENCE
QUANTITIES

Clustering is measured by the number density of coherent fine-
scale eddies N = n/V , where n is the number of coherent fine-scale
eddies within a control volume V of which size is (40η)3. Figure
2 shows profiles of N /〈N 〉m and the energy dissipation rate ε/ε0
across the mixing layer. These values are normalized by the aver-
aged value at the center of the mixing layer. The profile shows a
peak at the center, and the high number density region having high
energy dissipation rate is well defined.

To link fine-scale eddy clusters and turbulence quantities, the
joint PDF of the number density N and the enstrophy 〈ω2〉V , and
that of N and the strain rate 〈Si jSi j〉V are computed. 〈〉V indicates
that the quantities are spatially averaged within the same control
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Figure 2. Profile of the number density of the coherent fine-scale
eddy and the normalized energy dissipation rate.
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Figure 3. Joint p.d.f. between N /〈N 〉m and enstrophy (a) and
N /〈N 〉m and the strain rate magnitude (b) of filtered data at ∆ =
160η.

volume as the number density. The joint PDF of N and 〈ω2〉V , and
that of N and 〈Si jSi j〉V are shown in Fig. 3. The distributions of
these PDFs are apparently different especially for high number den-
sity condition (N > 2.0). The PDF of the enstrophy indicates that
the probability of the stronger enstrophy is maintained for the high
population condition. On the other hand, the PDF of the strain rate
indicates that the correlation of the high magnitude of large-scale
strain and the high number density of the eddies is not apparent.
This gives an idea of the spatial distributions of the fine-scale eddy
cluster and large-scale turbulence structures. The intense enstrophy
structures tend to exist in the high density region of the fine-scale
eddies, while the strain rate structures are not active as much within
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Figure 4. Snapshot of large-scale ω2 (blue), Si jSi j (magenta) and ωiSi jω j (green) structures overlaid on the clusters of coherent fine-scale
eddies.

the cluster. It is noted that the p.d.f.s of the unfiltered enstrophy and
strain rate are very similar and both show very strong correlations
with N (not shown) since they include small scale contributions
created by fine-scale eddies themselves. In addition, as it is indi-
cated in figure 2, high number density corresponds to high energy
dissipation.

In the transport equations of the enstrophy and the strain rate
magnitude, the enstrophy amplification termωiSi jω j represents the
gain and loss of the enstrophy and the strain rate magnitude, re-
spectively. Therefore, looking at the relation of these three terms is
of our interest. Figure 4 shows instantaneous isosurfaces of these
terms superposed on the axes of coherent fine-scale eddies. The
enstrophy, the strain rate and the amplification of enstrophy are fil-
tered at ∆ = 160η. The threshold values are chosen to be 1.8 times
of the mean value at the center of the shear layer (y = 0) so that
large-scale intense structures can be identified. Thickness and color
of the axes are scaled by their magnitude of Q. Strong eddies are
illustrated as thick red axes, whilst weak ones are depicted as thin
blue axes. The visualized field is a thin slab with spanwise length of
Lz/24 (= 4.6λ). The large-scale intense enstrophy structures exist
near the populated region of eddies. The strain rate tends to lo-
cate in relatively sparse region. It is also found that fine-scale eddy
axes distribute off-center of large-scale strong enstrophy structures,
which is consistent with Leung et al. (2012). In terms of spatial re-
lation between the large-scale enstrophy and strain rate structures,
they tend to exist close to each other. In addition, the intense enstro-
phy amplification structures locate between these two, which play a
role in an exchange between the enstrophy and the strain rate. These
observations qualitatively suggest interactions between these terms
in the physical space.

Figure 5 presents the filtered enstrophy 〈ω2〉V , strain rate

Figure 5. Averaged 〈ω2〉V , 〈Si jSi j〉V and 〈ωiSi jω j〉V conditioned
by N .

magnitude 〈Si jSi j〉V and amplification rate of the enstrophy
〈ωiSi jω j〉V conditionally averaged on the number density of the
coherent fine-scale eddies N . The enstrophy constantly increases
with N , but the strain rate stays a value around average through
from intermediate to high N regions. The enstrophy amplification
term shows a noticeable tendency. It increases up to N /〈N 〉m '
1.8, and then drops until N /〈N 〉m ' 2.5. This result implies that
in the region where the coherent fine-scale eddies are moderately
populated, i.e., 1.0 ≤ N /〈N 〉m ≤ 1.8, the large-scale enstrophy
amplification is active whereas in the region where the coherent
fine-scale eddies are highly populated, that is, in the clusters, the
enstrophy amplification at large-scale becomes weaker. If it is sup-
posed to take vortex stretching as a principal mechanism for en-
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Figure 6. joint p.d.f.s between (a) 〈ωiSi jω j〉V and 〈ω2〉V , and (b)
〈ωiSi jω j〉V and 〈Si jSi j〉V . The inner contour level is -2 and the
outer contour level is -16.

strophy amplification as discussed by (Hamlington et al., 2008),
the result in figure 5 indicates that the large-scale vortex stretch-
ing is significantly reduced in the clusters. For higher number den-
sity 2.5 ≤ N /〈N 〉m ≤ 3.0, however, the data behave differently:
the enstrophy stops increasing and the enstrophy amplification re-
increases. For the current database, the number of samples for
N /〈N 〉m > 3.0 may not be sufficient to discuss the meaning of
this behavior. Therefore it is desired to have higher Reynolds num-
ber data showing higher intermittency. It is also noted that these
quantities increase monotonically with N for the unfiltered data.
This can be interpreted as a result of strain rate field induced by
small-scale vortices within high N region.

After looking at the effect of population density, the relation-
ship of the enstrophy and strain rate fields against the enstrophy
amplification is considered. Figure 6 indicates the joint p.d.f.s of
(a) 〈ωiSi jω j〉V and 〈ω2〉V and (b) 〈ωiSi jω j〉V and 〈Si jSi j〉V . For
large-scale structures, the negative enstrophy amplification is not
associated with the strong strain rate event whereas the intense en-
strophy event is significantly correlated with both negative and pos-
itive enstrophy amplification. This indicates that large-scale intense
strain plays an important role in positive enstrophy amplification.
Buxton & Ganapathisubramani (2010) showed that the enstrophy
production (ωiSi jω j > 0) is caused by parallel alignment of the
vorticity vector with the extensional eigenvector of the strain rate
tensor. From this view point, the finding in figure 6(b) would be
a signature of the parallel alignment of the vorticity vector with
the extensional strain rate eigenvector caused by large-scale intense
strain field.

Figure 7. Alignment of the vorticity vector and the eigenvectors
of the strain rate tensor for (a) the unfiltered strain field and (b) the
filtered strain field for ∆ = 160η.

ALIGNMENT OF THE VORTICITY VECTOR AND THE
EIGENVECTORS OF THE STRAIN RATE TENSOR

The enstrophy amplification term is a key quantity contribut-
ing both the enstrophy and the strain rate. The magnitude of this
term strongly depends on the alignment of the strain rate tensor
and the vorticity vector as described by the following relation:
ωiSi jω j = ω

2si (êi · ω̂)2, where ω2 = ωiωi , si is the eigenvalue
of Si j , êi is its eigenvector and ω̂ = ω/|ω |. The alignment of the
strain rate and the vorticity has been extensively investigated. The
preferential alignment of the vorticity vector with the intermedi-
ate eigenvector has previously been observed numerically (Ashurst
et al., 1987; Vincent & Meneguzzi, 1994; Tanahashi et al., 2001)
and experimentally (Tsinober et al., 1992; Mullin & Dahm, 2006;
Naka et al., 2016). On the other hand, based on the classical pic-
ture of turbulence, the vortices exerted to the shear are likely to be
aligned in its direction. Hamlington et al. (2008) examined the local
and non-local effects of strain rate field by dividing physical space
with a cutoff radius and showed that vorticity vector preferentially
aligns with the extensional strain rate in the non-local field. Leung
et al. (2012) confirmed this by filtering out the local strain field by
bandpass filtering. They adopted a somewhat larger filter width for
the strain rate field than that for the enstrophy field, by which the
non-local effect of strain rate can be extracted.

Figure 7 presents the p.d.f. of alignment cosine of the vorticity
vector and the eigenvectors of the strain rate tensor. The strain rate
is filtered at ∆ = 160η. The vorticity vector preferentially aligns
with the most extensional eigenvector rather than the intermediate
one. This is due to filtering out the local strain rate field as noted by
Leung et al. (2012). Therefore, it is considered that this filter width
is adequate to see the alignment of the vorticity vector and the most
extensional eigenvector of the filtered strain rate.

Figure 8 shows the alignment of the vorticity with the strain
rate eigenvector conditioned by the number density of coherent
fine-scale eddy N . In the moderate density region such that
N /〈N 〉m < 2.0 (figure 8a), the p.d.f.s of the alignment cosine are
quantitatively similar to those in figure 7. On the other hand, in
the highly populated region, 2.0 ≤N /〈N 〉m < 3.0 (figure 8b), the
p.d.f.s become flat suggesting that the alignment of the vortices and
large-scale strain rate inside the clusters are less directional. This
finding highlights the result in figure 5 which shows that the large-
scale enstrophy amplification is relatively small in the cluster.

Figure 9 shows the alignment of vorticity and the eigenvectors
of the strain rate conditioned by the strain rate magnitude. To see
the contribution of the intense strain rate, the alignment p.d.f. is
conditioned by the strain rate magnitude. The shape of the p.d.f. is
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Figure 8. Alignment of the eigenvectors of the strain rate tensor
and the vorticity vector for different number density conditions; (a)
N /〈N 〉m < 2.0, (b) 2.0 ≤N /〈N 〉m < 3.0.

in general the same with figure7 for the both cases. However, the
peaks of p.d.f.s for λ3 and λ1 in figure 9(b) are much more pro-
nounced around | cosθ | = 1 and | cosθ | = 0 respectively, than that in
figure 9(a). This suggests that within intense strain rate region, the
vorticity is predominantly perpendicular to the compressive strain
rate and parallel to the extensional one. This is closely related to the
results shown in figure 6(b). The strong strain rate selectively gives
the enstrophy production. These evidences lead to an assumption
that the clusters of fine-scale structures can be formed and main-
tained by associating intense strain rate structures located in the pe-
riphery of the cluster, in which prevalent formation of worm-like
vortices occurs as a result of the preferential alignment of vorticity
with the largest extensional strain rate.

INTER-SCALE ENERGY TRANSFER
The inter-scale energy transfer is fundamental phenomenon in

turbulence. In the framework of LES, it is important to know the
energy transfer between the grid scale (GS) and subgrid scale (SGS)
motions. The energy transfer is quantitatively represented by the
GS-SGS energy transfer term, Eτ = −τi jSi j , where τi j is the SGS
stress tensor.

Importance of intense strain rate on the inter-scale energy
transfer is confirmed by figure 10(a) which shows the joint p.d.f.
of 〈Eτ〉V and 〈Si jSi j〉V at filter size of ∆ = 160η. The energy trans-
fer and the strain rate show a strong positive correlation. Intense
strain rate leads to high value of forward energy transfer whereas
moderate strain is accompanied with both forward and backward
energy transfer. The definition of Eτ partially explains this result:
larger magnitude of Si j leads to larger magnitude of Eτ , although
it gives no explanation for the positive correlation between Eτ and
Si jSi j . This result can be understood by recalling the alignment of

Figure 9. Alignment of the eigenvectors of the strain rate ten-
sor and the vorticity vector for different strain rate conditions; (a)
〈Si jSi j〉V /〈Si jSi j〉V,m < 3.0, (b) 〈Si jSi j〉V /〈Si jSi j〉V,m ≥ 3.0.

the vorticity with the principal strain rate suggested in figure 9. In
the intense strain rate region the vorticity preferentially aligns with
the most extensional strain rate leading to the dominance of vor-
tex stretching and the forward energy transfer. On the other hand,
within the moderate strain rate region the preferential alignment be-
comes weaker, resulting in moderate forward energy transfer and
appearance of backward energy transfer.

Figure 10(b) represents the joint p.d.f. of 〈Eτ〉V and the num-
ber density of fine-scale eddies N . The forward energy transfer can
take significant value for N /〈N 〉m ∼ 1.0, while in the high density
region, the most probable amount of energy transfer is around av-
erage. This suggests that active energy transfer does not take place
within the fine-scale eddy clusters, as expected from the result of
figure 8(b). In that region, the principal action is energy dissipa-
tion. Since creation of small-scale vortices by large-scale strain rate
would take some time, it is not surprising that the region of active
energy transfer does not correspond to an high eddy number density
region at an instantaneous flow field.

CONCLUSION
A direct numerical simulation of a temporally developing tur-

bulent mixing layer at Reλ ' 250 has been conducted. Coherent
fine-scale eddies are extracted from the DNS data, and their num-
ber density is defined to measure clustering of the fine-scale eddies.
The large-scale structures are separated using a Gaussian low-pass
filter. The relation between the fine-scale eddy cluster and the large-
scale vorticity, and that with the strain rate are evaluated by the joint
p.d.f. It indicates that the large-scale high enstrophy regions clearly
correlate with the cluster of fine-scale eddies compared to the large-
scale high strain-rate.

Interaction between enstrophy and strain rate fields is investi-
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Figure 10. (a) Joint p.d.f. between 〈Eτ〉V and 〈Si jSi j〉V . The inner
contour level is -17 and the outer contour level is 1. (b) joint p.d.f.
〈Eτ〉V and N . The inner contour level is -20 and the outer contour
level is 1.

gated in terms of the enstrophy amplification rate. In the instanta-
neous snapshot of isosurfaces, the large-scale enstrophy and strain
rate structures exist close to each other, and that of the enstrophy
amplification tends to exist in between. The large-scale enstrophy
amplification within the high number density region is significantly
reduced. It implies that vortex stretching by large-scale structure
becomes weaker in the clusters. It is also found that the intense
strain rate leads to the positive enstrophy amplification.

The p.d.f.s of the alignment cosine of the vorticity vector and
the eigenvectors of the large-scale strain rate tensor are evaluated.
The p.d.f. indicates flat shape in the high number density region,
suggesting that the vortex stretching and compression are less direc-
tional. The p.d.f. conditioned by the magnitude of strain rate tensor
is also evaluated and it is confirmed that the preferential alignment
of vorticity with the most extensional strain becomes more promi-
nent in the intense strain rate region.

The inter-scale energy transfer between grid and subgrid scales
is investigated. High number density region does not correspond to
the high energy transfer region, while the strain rate exhibits strong
positive correlation with it. These results suggest that the strong
strain rate structures play a role of active forward energy transfer.
The vorticity vector preferentially aligns with the most extensional
strain rate eigenvectors.
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