
10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017

PREDICTION OF PREFERENTIAL CONCENTRATION STATISTICS FROM
EULERIAN TWO-POINT CORRELATIONS

Andrew Banko

Department of Mechanical Engineering
Stanford University
Stanford, CA 94305

abanko@stanford.edu

Laura Villafañe
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ABSTRACT
Non-local statistics of preferential concentration in the iner-

tial range of turbulence are studied by considering the size distribu-
tion of high number density regions of particles, “clusters,” and low
number density regions, “voids”. Direct Numerical Simulation is
used to compute particle and fluid phase statistics in particle-laden
isotropic turbulence and turbulent square duct flow, including the
size distributions of clusters and voids. It is found, in agreement
with the literature, that clusters are correlated with low enstrophy
flow structures and voids with high enstrophy flow structures. Sta-
tistical topography is used to predict the size distributions of clus-
ters and voids, which are in good agreement with those computed
from the isotropic turbulence simulations. This suggests that the
underlying carrier phase turbulence can be used to quantitatively
model more complicated statistics of the particle phase in homoge-
neous and isotropic turbulence. However, the statistical topography
methods poorly predict preferential concentration in an anisotropic
turbulent square duct flow. The model shortcomings are discussed.

INTRODUCTION
Disperse inertial particles in a turbulent flow become preferen-

tially concentrated, dynamically forming clusters with number den-
sities several times higher than the mean and leaving adjacent re-
gions of the flow completely devoid of particles (Fessler et al., 1994;
Balachandar & Eaton, 2010). Studies of preferential concentration
are motivated by its persistence across flows with seemingly dis-
parate length and time scales: dust-laden internal cooling passages
in jet engines, radiation absorption by rain droplets in clouds, and
mass agglomeration in planet forming nebulae. Cluster and void
formation arises from the finite aerodynamic time constant, τp, of
heavy particles which causes their trajectories to deviate from those
of the Lagrangian fluid elements. The accepted mechanisms can be
concisely summarized by a perturbation expansion assuming small
τp, an incompressible carrier fluid, and an Eulerian representation
of the disperse phase (Maxey, 1987):

vi ≈ ui−Stη

(
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)
;
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)

All above quantities are non-dimensional. Here vi and n are veloc-
ity and number density fields for the particle phase, ui is the fluid

velocity, Stη is the Stokes number based on the Kolmogorov time
scale of the turbulence, p is the fluid pressure field, Ω is the rotation
rate tensor, and S is the strain rate tensor. The local number density
therefore decreases in regions of high rotation rate and low strain,
indicating that heavy particles are centrifuged out of the cores of
vortices. Conversely, particles accumulate in regions of low vortic-
ity and high strain, and stick to points of zero acceleration (Chen
et al., 2006).

There has been significant success in modelling preferential
concentration at sub-Kolmogorov scales due to the differentiabil-
ity of the velocity field across the viscous interval (Balkovsky et al.,
2001; Gustavson & Mehlig, 2016). The controlling parameter at
viscous length scales is Stη . In general, particles respond to a
range of fluid time scales around the aerodynamic time constant,
and a scale dependent Stokes number has been used to describe
the propensity of particles to preferentially concentrate on length
scales larger than the Kolmogorov scale (Yoshimoto & Goto, 2007).
Recently, attention has turned to preferential concentration on in-
ertial range scales for its importance in cloud physics and planet
formation (Matsuda et al., 2012; Johansen et al., 2007). Much
of the current research analyzes and models coarse-grained single
point statistics and particle pair statistics, such as the number den-
sity probability distribution and the radial distribution function (Bec
et al., 2007; Bragg et al., 2015). This is not surprising considering
that a complete description specifying the joint probability distribu-
tion function (PDF) of position and velocity for N particles is in-
tractable for even small N. However, additional non-local statistics,
such as the spatial extent of low particle number density regions (i.e.
voids), are important in many systems. For instance, the radar re-
flectivity factor characterizing the intensity of reflected microwave
signals from clouds is determined by the power spectrum of cloud
droplet number density fluctuations, a non-local statistic (Matsuda
et al., 2014). Several authors calculated the PDF for the sizes of
voids in two and three-dimensional turbulence and noted the self-
similarity of void sizes in the inertial range, as evidenced by power-
law tails of the PDF (Boffetta & Lillo, 2004; Yoshimoto & Goto,
2007). The self-similar distribution of void sizes was attributed to
the self-similarity of the turbulence, as voids were found to be cor-
related with regions of high vorticity magnitude. The power law
tail was modeled as p(V ) ∼ V−16/9, where V is the void volume,
by assuming a self-similar hierarchy of spherical vortices, devoid of
particles, and reproducing a Kolmogorov −5/3 energy spectrum.
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Figure 1. Simulation domains for (a) homogeneous and isotropic
turbulence and (b) turbulent square duct flow.

This paper extends the ideas of Yoshimoto & Goto (2007) and
quantitatively models the algebraic tails of cluster and void size
PDFs using the two-point statistics of scalar fields in the carrier-
phase turbulence to which the particle positions are strongly cor-
related (e.g. enstrophy and the pressure hessian). The theoretical
background for the model comes from statistical topography, which
describes the properties of isocontours of random scalar functions.
The predictions are compared to results from point particle Direct
Numerical Simulations (DNS) of homogeneous and isotropic tur-
bulence (HIT). Since HIT is an idealized flow that can never be
fully realized in physical systems due to large scale anisotropies
such as shear, we also compare the results to the DNS of a turbulent
square duct flow. In what follows, we briefly describe the numerical
methodology, provide an overview of the important concepts from
statistical topography, and then present results from the simulations
on cluster and void statistics.

SIMULATION METHODOLOGY
Numerical simulations of particle-laden turbulent flow are per-

formed in order to compute the statistics of particle clusters and
voids, examine their correlations with the fluid phase turbulence,
and to compare results to the predictions of statistical topography.
Two flows are considered: homogeneous isotropic turbulence and
turbulent square duct flow.

The Direct Numerical Simulation (DNS) of statistically sta-
tionary, homogeneous and isotropic turbulence (HIT) is performed
on a triply periodic domain, as shown is Figure 1a. Complete details
of the simulation method are given in Esmaily-Moghadam & Mani
(2016). The incompressible Navier-Stokes equations are solved on
a staggered mesh with 2563 control volumes. The Taylor Reynolds
number is Reλ = 100 and stationarity is maintained using linear
forcing with dynamic feedback such that temporal fluctuations in
the volume averaged Kolmogorov timescale are less than 0.3%.

The motion of inertial particles is simulated using the point-
particle method, wherein discrete particles are tracked in a La-
grangian frame of reference assuming a Stokes drag force. Grav-
ity is neglected and the simulations are one-way coupled mean-
ing that the back-reaction force by the particles on the fluid is ig-
nored. Inter-particle collisions are also neglected. The Kolmogorov
based Stokes numbers, which were simulated simultaneously, are
Stη ≡ τp/τη = 2z for z ∈ {−4, −3, ..., 4}. For each Stokes num-
ber, 105 particles were initialized randomly in space and allowed
to evolve for several large eddy turnover times before collecting in-
stantaneous snapshots of particle positions and fluid velocity fields
for post-processing.

A second one-way coupled, point-particle DNS was done for
the pressure driven turbulent flow in a square duct. Figure 1b shows
a schematic of the computational domain. The fluid phase is calcu-

lated using a staggered scheme on a stretched mesh with 160 control
volumes in the wall normal directions and 240 control volumes in
the streamwise direction. An aspect ratio of is 6:1 is used in order to
ensure that the flow becomes de-correlated in the periodic stream-
wise direction. The Reynolds number based on the bulk velocity,
duct width, and kinematic viscosity is Re≡UbH/ν = 104. A poly-
disperse collection of particles is simulated in order to match a com-
panion experiment described in ne et al. (2017b). The Kolmogorov
based Stokes numbers computed from the channel averaged dissi-
pation rate are in the range of Stη ∈ (0.5, 8), and the average Stokes
number is about 5. In this case, the simulations were four-way cou-
pled to include particle-wall and particle-particle collisions, but the
mass loading was kept low enough such that two-way coupling be-
tween the particles and the fluid is unimportant. Accounting for
collisions was necessary in order to counteract the turbophoretic
drift of particles towards the walls and establish a statistically sta-
tionary concentration distribution. Gravity is included and aligned
with the streamwise direction in order to match the experiments;
however, the particle settling velocity is two orders of magnitude
smaller than the bulk velocity and so the effect of gravity is small.
The simulation was allowed to run for several flow through times
such that all statistics were stationary prior to collecting snapshots
of particle positions and fluid velocity fields for post-processing.

PERCOLATION AND STATISTICAL TOPOGRAPHY
OVERIVEW

The goal of the present research is to model the statistics of spa-
tially coherent preferentially concentrated structures. In the same
way that turbulent flows are approximately decomposed into vortex
sheets and tubes, particle-laden flows have been decomposed into
clusters and voids. The clusters correspond to spatially connected
regions of high particle number density, and the voids to regions
of low particle number density. As with fluid turbulence, there is a
freedom of choice in the definition of “high” and “low,” which are
typically thresholds on number density specified by the researcher.
An additional ambiguity not present in the fluid phase is the defi-
nition of number density. The preferentially concentrated, disperse
particle phase typically does not satisfy a continuum hypothesis at
any scale and therefore the number density depends on the volume
over which it is defined (the coarse-graining scale).

Percolation theory provides a framework to approximate the
statistics of clusters and voids while simultaneously studying the
effect of coarse-graining and threshold. The percolation problem
is typically posed on a lattice, in which sites are occupied and un-
occupied with a certain probability, and correlations between sites
are allowed. Occupied sites connected to occupied nearest neigh-
bors form clusters. Statistical topography is an equivalent frame-
work posed in terms of scalar fields, the closed isocontours of which
form the clusters. The values of the scalar field at separate points
are correlated because the scalar field is continuous. For percolation
theory, the occupation probability represents the threshold and the
lattice unit cell represents the coarse graining scale. For statistical
topography, the value of the isocontour and the smallest character-
istic length scale represent the threshold and coarse graining scale,
respectively. As the name suggests, varying the threshold causes
clusters to grow and shrink and at some critical level to percolate
as shown in Figure 2. In this figure the occupation probability is
increased towards the percolation threshold between panels (a) and
(c). Correspondingly, the total number of occupied sites shown in
black increases. The largest clusters present in panels (a) and (c) are
shown in (b) and (d), respectively. Below the percolation threshold,
the largest cluster is finite in size (Figure 2b). At the percolation
threshold, a cluster on the order of the system dimensions appears
(Figure 2d), indicating the presence of long range order. Also at
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Figure 2. Illustration of the percolation phenomena on a 50 x 50
square lattice. Occupied sites are shown in black and empty sites
are shown in white. The total set of occupied sites are plotted in (a)
and (c) for two occupation probabilities approaching the percolation
threshold: 30% in (a) and 40% in (c). Clusters are defined using 8
nearest-neighbor connectivity. (b) and (d) show the largest clusters
present in (a) and (c), respectively. The cluster in (d) is an example
of a spanning cluster.

this threshold, it is known that the probability distribution function
(PDF) of cluster sizes has an algebraic tail. Above and below the
percolation threshold there is still an algebraic tail but with expo-
nential cut-off.

Many of the rigorous results, scaling arguments, and applica-
tions of percolation theory and statistical topography are summa-
rized in the review by Isichenko (1992). The conclusions relevant
to the present work are succinctly written with respect to multi-
scale (i.e. long-range correlated) statistical topography as outlined
in Isichenko & Kalda (1991). In multi-scale statistical topography
there is a broadband spectrum of length scales present, and in mono-
scale statistical topography there is a single length scale present
which is on the order of the correlation length.

Consider a scalar field n(x, t) with mean zero as a function of
space in two or three dimensions at a fixed time, t. Denote the
spectrum of n as E(k) such that < n2 >=

∫
∞

0 E(k)dk, assuming sta-
tistical isotropy where k = |k| is the magnitude of the wavevector
k. Here < · > denotes the expected value. Then if E(k) ∼ k−p we
have 2H = p− 1 where H is related to the scaling of the structure
function, S(r), or two-point correlation, R(r), of n by the Wiener-
Khinchin theorem:

S(r) =< (n(r)−n(0))2 >∼ r2H : 0 < p < 1

R(r) =< n(r)n(0)>∼ r2H : 1 < p < 3

In statistical topography, the clusters form a fractal set. A frac-
tal can have a non-integer dimension because the boundary is rough,
and because the set is fragmented into clusters. The number-area
rule gives the scaling of the cumulative distribution function for the
sizes of clusters based on the fractal dimension. If V is a random
variable denoting the d-dimensional volume, then:

P(V > v)∼ v−dF/d or p(V )∼V−(1+dF/d)

Where P(·) denotes probability and p(V ) is the probability density.

Table 1. Fractal dimension of the set of clusters predicted by sta-
tistical topography. The dimension of the space is d. The critical
exponents are: ν = 4/3, β = 5/36 for d = 2; ν ≈ 0.85, β ≈ 0.42
for d = 3

H <−1/ν −1/ν < H < 0 0 < H < 1

d−β/ν d +βH d−H

Figure 3. Snapshot of particle number density field calculated
with a filter width of R/η = 7. Clusters (red) and voids (green)
are outlined for thresholds applied near the percolation threshold.

Therefore, by knowing the scaling of the two-point correlations, or
equivalently the power spectrum, one can predict the distribution of
cluster sizes.

Statistically topography predicts that the fractal dimension, dF ,
of the set of clusters is equal to the fractal dimension of free isocon-
tours given in Table 1. H is related to the strength of the correla-
tions. If −1/ν < H < 1 then correlations are long range enough to
be important, and if H <−1/ν then the problem reduces to that of
mono-scale statistical topography (which is equivalent to the uncor-
related lattice percolation problem).

SIMULATION COMPARISON AND DISCUSSION
This section presents cluster/void results from the simulations

with direct comparison to the model predictions. Number density
fields are computed from the simulations at several times, t. The
coarse grained number density assigned to each computational grid
cell is defined as the number of particles within a ball of radius R
centered on that cell, divided by the volume of the ball. If there are
N particles in the simulation and the ith particle is located at xpi:
n(x, t) = 1

Vol(BR)

∫
BR(x)

(
∑

N
i=1 δ (ζ −xpi)

)
d3ζ .

Clusters are then defined as connected components of the set
of points for which nR(x, t) is greater than or equal to α ∈ R≥0
standard deviations from the mean. Likewise, voids are defined as
the connected components of the set of points for which nR(x, t) is
less than or equal to β ∈ R≥0 standard deviations from the mean.
Figure 3 shows an example of clusters and voids identified from
the HIT simulation near the percolation threshold. The figure is a
cross-sectional slice through the three-dimensional structures.

In order to predict the sizes of particle clusters and voids, we
assume that particle positions are strongly correlated with a scalar
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field in the flow whose two-point correlation (or spectrum) is known
from the DNS. We then use the statistical topography results to iden-
tify an appropriate fractal dimension and power law tail of the size
PDF.

Isotropic Turbulence
A range of particle Stokes numbers were considered in the sim-

ulations. It was found that the results are insensitive for all Stη > 2,
because each of these Stokes numbers exhibit preferential concen-
tration on scales greater than the Kolmogorov scale and up to the
integral scale of the turbulence. Therefore for brevity and to im-
prove statistics we combine the Stokes numbers 2, 4, and 8 into a
single set of particles for each snapshot. Particle clusters and voids
are then computed across several snapshots. Finally, any clusters
and voids intersecting a boundary of the simulation domain are re-
connected using the periodicity of the simulation to structures on
the opposite boundary.

First, we briefly describe the effect of the threshold and coarse-
graining scale on the number and size of clusters/voids identified in
the simulation. Qualitatively, the observations will be similar to the
picture of percolation described previously in Figure 2. When the
threshold is close to the mean number density, a spanning cluster
and void exist for all coarse-graining scales. As the threshold is
increased, eventually all structures become finite in size. We re-
mark that the critical threshold at which this transition happens is
relatively independent of the scale over which number densities are
computed and close to 1.5 standard deviations from the mean, for
both the clusters and the voids. The maximum size of the finite clus-
ters and voids peaks when the spanning structure becomes finite,
and the volume then shrinks as the thresholds are further increased.
Also, the number of objects decrease with increasing threshold and
increasing coarse-graining scale due to the elimination of small
clusters and voids. The number of objects also decreases slightly
for thresholds very near the mean number density because smaller
clusters and voids combine into larger ones.

The results for clusters/voids larger than the coarse-graining
scale were found to be insensitive to most choices of R. If R was
too close to the system dimensions, then the results were biased.
Likewise, if R was too small (i.e. comparable to the mean parti-
cle spacing) then a large number of small structures reminiscent of
Poisson noise appeared. Therefore for brevity, the following results
correspond to R/η = 7, which is an intermediate value. We also
limit the discussion to thresholds near the critical threshold when
the spanning cluster disappears.

As discussed in the introduction, previous studies have shown
that individual particles tend to be concentrated in regions of the
flow with low vorticity and high strain rate, or equivalently ∇2 p <
0. Figure 4 shows scatter plots of the average enstrophy and the
average pressure hessian computed over each cluster and void. The
results are in good agreement with this conclusion, especially for
the largest clusters and voids. Smaller structures may be the result
of Poisson noise due to the finite number of particles, and these
structures are not as well separated into dynamically distinct regions
of the flow.

The PDF of cluster and void sizes are shown in Figure 5a. In
agreement with Yoshimoto & Goto (2007), voids can be orders of
magnitude larger than the Kolmogorov scale of the turbulence. This
is also true for the clusters, which have a very similar size PDF. In
order to predict the algebraic tail of the PDFs, power spectra of the
coarse-grained number density, enstrophy, and pressure hessian are
calculated from the simulations. Due to the relatively low Taylor
Reynolds number, it was found that all spectra decay exponentially.
Therefore, the problem simply reduces to that of mono-scale sta-
tistical topography. The implied fractal dimension is dF ≈ 2.51

Figure 4. (a) Scatter plot of average enstrophy, |ω|2, and (b) aver-
age pressure hessian, ∇2 p, computed over each cluster and void in
HIT. The coarse graining scale R/η = 7. The enstrophy and pres-
sure hessian are normalized by the Kolmogorov time scale, τη , and
the cluster/void volumes are normalized by the volume of the Kol-
mogorov scale, Vη = η3.

and the PDF of both clusters and voids are expected to scale as
p(V )∼V−1.84. This prediction is plotted as the solid line in Figure
5a, and is a good approximation to the tail of both PDFs. For com-
parison, Yoshimoto & Goto (2007) used an alternative argument to
predict p(V ) ∼ V 16/9 ≈ V−1.77 , which corresponds to a smaller
fractal dimension of dF = 2.33. Due to the present statistical un-
certainty, it is difficult to rule out either power law exponents and
additional data should be collected so that parameter estimation can
be performed.

Figure 5b and 5c show the size PDFs of regions of high and
low enstrophy, and positive and negative pressure hessian for com-
parison. The high enstrophy and positive pressure hessian curves
are similar to that of the particle voids, and are also modeled well
by the statistical topography prediction. This is in agreement with
the previous observation that voids are on average in regions of high
vorticity and low strain rate. The PDFs of low enstrophy and neg-
ative pressure hessian decay slightly faster than that of the clusters
and the model, but range of sizes and decay of the tail are still com-
parable.

The results from HIT suggest that the size distributions of clus-
ters/voids, and low/high regions of enstrophy, and negative/positive
regions of pressure hessian are similar. The fact that mono-scale
statistical topography provides a reasonable prediction for the clus-
ter/void size PDFs is interesting because it is based on a frac-
tal description of the fields. For Stokes numbers greater than 2,
Esmaily-Moghadam & Mani (2016) found that the particles at sub-
Kolmogorov length scales are not concentrated onto a fractal set.
The present results therefore provide additional evidence that pref-
erential concentration above and below the Kolmogorov scale can
be fundamentally different. We also note that the fractal descrip-
tion also suggests that the particle structures possess some degree
of self-similarity despite the fact that the turbulence does not con-
tain a self-similar inertial range.

Turbulent Square Duct Flow
The same analysis is repeated for the turbulent square duct flow

in order to examine the effect of large scale anisotropy. In an ex-
periment using the same distribution of particles, duct dimensions,
and Reynolds number, ne et al. (2017a) found that particle clusters
possessed a preferred orientation towards the principal mean shear
direction. The post-processing methods applied to the DNS data are
the same as for the HIT simulations except that only the central 3/4
of the duct is used. This excludes the regions close to the walls were
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Figure 5. (a) Probability distribution of cluster and void volumes, and (b) probability distribution of the volumes of high and low enstrophy
regions, (c) probability distribution of the volumes of positive and negative pressure hessian regions in HIT. The volumes are normalized by
the volume of the Kolmogorov scale, Vη = η3. The solid line is the prediction from mono-scale statistical topography.

Figure 6. (a) Scatter plot of average enstrophy, |ω|2, and (b) aver-
age pressure hessian, ∇2 p, computed over each cluster and void in
the duct flow. The coarse graining scale R/η = 7. The enstrophy
and pressure hessian are normalized by the Kolmogorov time scale,
τη , and the cluster/void volumes are normalized by the volume of
the Kolmogorov scale, Vη = η3.

turbophoresis increases the mean concentration distribution. Clus-
ters and voids intersecting the boundaries of this sub-domain are
excluded from the statistics. The percolation properties were qual-
itatively similar to those from the HIT simulation, and for brevity
we present results at a similar coarse-graining scale of R/η = 8.3
and near the percolation threshold.

Figure 6 is a scatter plot of enstrophy and pressure hessian av-
eraged over each cluster and void. The pressure hessian shows a
similar separation between clusters and voids to that of HIT: large
clusters tend to have ∇p < 0 and voids have ∇p > 0. However,
there is more overlap between the set of cluster and void points than
in HIT. This is most clearly observed in the scatter plot of the en-
strophy. The largest voids occur in regions with distinctly higher
enstrophy, but for each cluster size there is also a corresponding
void with a similar level of enstrophy.

The differences between the HIT and duct cases become more
apparent when considering the size distributions of clusters and
voids as shown in Figure 7. While the structures span a similar
range of scales compared to the Kolmogorov scale of the turbu-
lence, the decay of the PDF is distinctly different for clusters and
voids. The cluster PDF approximately follows a power-law with an
exponent similar to that predicted by the mono-scale statistical to-
pography. The mono-scale result is used because the 1-dimensional
power spectra computed in the streamwise direction for number

density, enstrophy, and pressure heassian decay exponentially due
to the low Reynolds number of the flow (not shown here).

The void PDF, on the other hand, decays more slowly than the
model prediction for V/Vη ∼ O(104). For larger void sizes, the
linear extent of the structures become comparable to the domain
cross-sectional dimensions and the rate of decay of the PDF in-
creases. Therefore, the scaling of size distributions of clusters and
voids in the duct flow are different from one another, whereas they
were indistinguishable in HIT. This observation is approximately
reflected in the size PDFs of regions of high and low enstrophy for
V/Vη ∼O(104). However, the influence of the finite domain cross-
section becomes apparent at values of V/Vη > 104. It is possible
that large structures extend from the near wall region as observed
for Reynolds stress structures in the study of Lozano-Duran et al.
(2012), and therefore are likely to be excluded from the statistics be-
cause they intersect the domain boundaries. The size PDFs of pres-
sure hessian for positive and negative values have similarly shaped
tails, which decay more slowly than the model for V/Vη < 104 and
then very rapidly for V/Vη > 104. This can be due to the inter-
section of large structures with the domain boundaries as well. The
slow decay of the void size PDF is qualitatively reflected in pressure
hessian PDFs, but the resemblance is not as striking as that obtained
in HIT. The pressure Hessian PDFs also do not distinguish between
the sign of the pressure hessian, while the particle cluster and voids
showed different behavior from one another.

Overall, the simple statistical topography model fails to pre-
dict the scaling of cluster and void sizes in the turbulent duct flow.
This is not surprising given the fact that the isotropy assumption
is broken, and it warrants the need for further study of preferential
concentration in anisotropic and inhomogeneous flows.

CONCLUSIONS
We have presented results from the DNS of particle-laden

isotropic turbulence and turbulent square duct flow. The statistics
of particle clusters and voids were calculated as a means for investi-
gating the non-local properties of preferential concentration. It was
found, in agreement with previous studies, that clusters are concen-
trated in regions of the flow with low vorticity and high strain rate.
Conversely, voids were correlated with regions of high vorticity and
low strain. Although this is true in both flows, the clusters and voids
showed a less obvious decomposition in the duct.

The distribution of cluster and void sizes were calculated from
the simulations and compared to predictions from statistical topog-
raphy. Due to exponential decay of the power spectra for the particle
number density, fluid enstrophy, and fluid pressure hessian fields,
the percolation problem fell into the class of mono-scale statistical
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Figure 7. (a) Probability distribution of cluster and void volumes, and (b) probability distribution of the volumes of high and low enstro-
phy regions, (c) probability distribution of the volumes of positive and negative pressure hessian regions in the duct flow. The volumes are
normalized by the volume of the Kolmogorov scale, Vη = η3. The solid line is the prediction from mono-scale statistical topography.

topography. In HIT, the size PDFs of all quantities displayed heavy
algebraic tails that were well approximated by the mono-scale sta-
tistical topography prediction. This suggests a sort of symmetry in
the statistics of clusters and voids, in addition to a strong correspon-
dence with the background turbulence structures.

The symmetry between cluster and void size statistics was bro-
ken in the turbulent duct flow case, and statistical topography pro-
vided a poor approximation of the void size PDFs. This is because
the model assumes statistical isotropy of the scalar field under anal-
ysis, and does not explicitly depend on the isocontour of interest
(e.g. positive or negative). Therefore it could not capture the dif-
ference between clusters (positive number density fluctuations) and
voids (negative number density fluctuations).

Future work should investigate the mechanism responsible for
differences in the statistics of clusters and voids in anisotropic flows
in order to better predict preferential concentration in engineering
systems. Simulations of HIT should also be performed at higher
Reynolds numbers in order to achieve an inertial range and test the
predictions of multi-scale statistical topography. With a sufficient
Reynolds number it may also be possible to distinguish between
inertial range scales at which a variety of Stokes numbers cluster
similarly, and scales at which the clustering is different.
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