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ABSTRACT 

The interaction between the near-wall and logarithmic layer in 

a high Reynolds number zero pressure gradient turbulent boundary 

layer is examined in terms of polyspectal measurements. The near 

wall velocity fluctuation skewness is decomposed in frequency 

space via the real part of the autobispectrum. Similarly, the cross-

bicoherence is used to examine the nonlinear phase coupling 

between the near wall region and logarithmic layer. These 

measurements clearly show the importance of quadratically 

nonlinear mechanisms in characterizing the near wall-outer layer 

interaction. To this end, a Volterra nonlinear system model 

containing both linear and quadratically nonlinear system transfer 

functions is proposed to model the near-wall outer layer 

interaction, It is demonstrated that the transfer functions may be 

determined via measured polyspectal quantities and the system 

output due to linear, quadratic and linear-quadratic coupling 

mechanisms quantifield. 

INTRODUCTION 

It is now widely accepted that large-scale vortical structures 

are an important and universal feature of the outer region of wall 

bounded turbulent flows (e.g. Hutchins and Marusic (2007), 

Adrian (2007), Monty et al (2007), Marusic et al (2010), Smits, 

McKeon and Marusic (2011) and others). It has also been 

demonstrated that these outer layer structures impose their imprint 

on the near-wall region of the turbulent boundary layer in the form 

of the amplitude and phase modulation of near-wall velocity and 

wall shear stress fluctuations (e.g. Hutchins and Marusic (2007), 

Mathis et al (2009), Ganipathisubramani et al (2009)).  In addition, 

Mathis et al (2011) demonstrate that the skewness of velocity 

fluctuations in the near-wall region is directly linked to amplitude 

modulation.  

The nature of the interation between outer and inner regions of 

wall bounded flows is of both fundamental and practical interest 

since the near-wall region is responsible for turbulence production. 

Schoppa and Hussain (2002) described a streak transient growth 

(STG) mechanism for the self-sustaining mechanism of near-wall 

turbulence generation. They suggested that STG was the dominant 

streamwise vortex generation mechanism from otherwise  normal 

mode stable low-speed streaks. In related work, Schoppa and 

Hussain (1998) proposed a large-scale strategy for skin friction 

drag reduction which was demonstrated in channel flow DNS. By 

imposing a streamwise-independent, spanwise velocity component 

along the channel wall by means of either a pair of counter-rotating 

streamwise vortices, or opposed wall jets significant drag reduction 

was achieved. The flow control served to prevent the lift-up of low-

speed streaks, thereby limiting their flanking wall-normal vorticity 

component which in their formulation, is a critical parameter for 

onset of STG. More recently, their channel flow drag reduction 

work was revisited by Canton et al (2016), where comparable 

levels of sustained drag reduction were achieved by a volumetric 

forcing approach. Motivated by this work a novel, nonintrusive, 

flush surface-mounted pulsed-DC plasma actuator was recently 

designed at the University of Notre Dame to be the first to actively 

intervene in the STG mechanism by producing a near-wall 

spanwise flow component that prevents the lift-up of low-speed 

streaks. Experiments show the abiliy of the actuator to very 

significnatly decrease or increase drag depending on the magnitude 

of the imposed spanwise velocity (Thomas et al (2016)).  

Aside from the practical aspects pertaining to drag reduction, 

the pulsed-DC actuator also provides an experimental tool by 

which the nature of the outer region-inner layer interaction can be 

investigated under both reduced and enhanced drag conditions and 

compared to the natural flow. Furthermore, in order to characterize 

the dynamic interaction between the near-wall and outer regions of 

the TBL a second-order Volterra nonlinear system model is 

applied. This model involves the determination of both linear and 

nonlinear system transfer functions that characterize the 

interaction. A particular focus of this paper is to describe and 

motivate the application of the nonlinear sytem model to the 

turbulent boundary layer.  

EXPERIMENTAL FACILITY 

The turbulent boundary layer measurements were conducted 

in a large in-draft wind tunnel facility located at the University of 

Notre Dame with a test section cross sectional area of 1.5 m ×1.5 

m, a working test section length of 15.25m, and a maximum speed 

of approximately 13.5m/s.  The inlet is 3.05 m × 3.05 m and 

corresponds to a contraction ratio of 4:1. A screen box is placed 

behind the inlet consisting of 4 stainless steel turbulence reduction 

screens (mesh spacing = 1 mm and wire diameter = 0.1 mm) with 
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0.229 m streamwise spacing between individual screens and 0.204 

m thick honeycomb (0.013 m diameter) placed directly upstream 

of the screens. The resulting free stream turbulence intensity 

measured 9.14 m downstream of the inlet was √𝑢2̅̅ ̅/𝑈∞ ≤ 0.5 %.

The wind tunnel is constructed of 1.9 cm plywood and also has a 

plexiglass side-wall for full optical access. In order to reduce 

surface roughness, a subfloor made of pressed particle board was 

installed over the plywood. Two essential characteristics of the 

experimental facility are that it must provide a ZPG turbulent 

boundary with (1) very high 𝑅𝑒𝜏 (≡
𝑈𝜏𝛿

𝜈
) and (2) large boundary 

layer thickness thereby allowing measurements of high wall-

normal spatial resolution.  Although the experiments are performed 

in a low-speed tunnel, its large streamwise fetch allows high 

Reynolds numbers to be achieved (Rex as large as 9 x 106).  This 

facility has been used to acquire ZPG turbulent boundary layer 

measurements at 𝑅𝑒𝜏 ≈ 3200. Representative samples of these

data are presented in the next section.  

TURBULENT BOUNDARY LAYER CHARACTERISTICS 

Figure 1a presents a sample turbulent boundary layer mean 

velocity profile obtained at the streamwise location of x = 12.2 m 

which corresponds to 𝑅𝑒𝜏 ≈ 3200. The profile is presented using

inner variable scaling with the Clauser method used to obtain the 

local friction velocity. The mean velocity profile is observed to 

exhibit a well-defined logarithmic region for 30 ≤ 𝑦+ ≤ 700 in

excellent agreement with classic log law of the wall. Figure 1b 

presents the corresponding streamwise component turbulence 

intensity profile using inner variable scaling. Consistent with 

previous studies, the profile exhibits a near-wall peak value of 
𝑢2̅̅ ̅̅

𝑈𝜏
2 =

7.25 at 𝑦+ ≈ 15. There is also indication of a weaker peak in the

logarithmic region centered near 𝑦+ ≈ 250.

Figure 1a. Mean velocity profile (𝑅𝑒𝜏 ≈ 3200). 

Figure 1b. Streamwise component turbulence intensity profile 

(𝑅𝑒𝜏 ≈ 3200). 

Figure 2 presents the skewness factor profile, 

𝑆𝑢 = 𝑢3̅̅ ̅/(𝑢2̅̅ ̅)3/2 , as a function of 𝑦+. This result is also in very

good agreement with previous measurements in high-Reynolds 

number turbulent boundary layers. In particular, 𝑆𝑢 is positive in

the near-wall region (𝑦+ ≤ 20) and becomes negative for 𝑦+ ≥
130. Note that the large-values of the skewness factor near the

edge of the boundary layer are heavily influenced by intermittency

associated with the turbulent / non-turbulent interface.

Figure 2. TBL skewness factor profile (𝑅𝑒𝜏 ≈ 3200).

The spectral content of the ZPG turbulent boundary layer in 

streamwise component wavenumber domain was examined in 

terms of the pre-multiplied 1-D auto spectral density of the 

streamwise component fluctuation, 𝑘𝑥𝜙𝑢𝑢/𝑈𝜏
2.  This is presented

in Figure 3a as a function of both 𝑦+and inner-variable scaled

streamwise wave number, 𝜆𝑥
+.  The assumed convective speed to 
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Figure 3 (a) Contours of pre-multiplied energy 1-D wavenumber spectra obtained in the Notre Dame facility at 𝑅𝑒𝜏 ≈ 3200. (b) Contours of

pre-multiplied energy 1-D wavenumber spectra obtained by Mathis et al (JFM, 2009) at 𝑅𝑒𝜏 ≈ 7300.

convert to 1-D wavenumber domain was the local mean speed. The 

pre-multiplied energy spectra of the streamwise velocity 

fluctuation shows an inner peak located at 𝑦+ = 15 and centered

at 𝜆𝑥
+ = 1000. A weaker outer peak appears near 𝑦+ ≈ 250,

𝑦/𝛿 ≈ 0.06 with a much larger wavelength 𝜆𝑥
+ ≈ 20000,  𝜆𝑥/𝛿 ≈

5. Figure 3b shows comparable ZPG turbulent boundary layer pre-

multiplied energy wavenumber spectra as obtained by Mathis et al

(2009). The inner and outer spectral peaks noted in Figure 3a are

also apparent in this case. In fact, the outer peak is more apparent

in Figure 3b and this is likely a consequence of the higher 𝑅𝑒𝜏 of

the Mathis et al (2009) experiment, 𝑅𝑒𝜏 ≈ 7300.

NATURE OF NEAR-WALL AMPLITUDE MODULATION 

As previously noted, small-scale velocity fluctuations in the 

near-wall region of the turbulent boundary layer undergo 

amplitude and phase modulation by larger-scales structures in the 

outer region. The correlation between near-wall amplitude 

modulation and large-scale structure in the boundary layer has 

been quantified in terms of an amplitude modulation correlation 

coefficient, R, which was defined by Mathis et al (2009) as, 

𝑅 =  
𝑢𝐿

+ 𝐸𝐿(𝑢𝑆
+)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

√𝑢𝐿
+2̅̅ ̅̅ ̅̅

 √𝐸𝐿(𝑢𝑆
+)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(1)

Here, 𝑢𝐿
+ and 𝑢𝑆

+ denote the inner-variable scaled large-scale and

small-scale velocity fluctuations, respectively. 𝐸𝐿(. ) represents the

envelope function of the near-wall fluctuations obtained using the 

Hilbert transform. In this experiment the velocity signal was 

divided into large and scall-scale parts by using a cutoff frequency 

of 50 Hz which corresponds to one large eddy turnover timescale 

(𝛿/𝑈∞). Figure 4 presents the measured amplitude modulation

correlation coefficient profile. It is found to be in remarkable 

agreement with R as measured by Mathis et al (2011) at similar 

Reynolds number. One can also note the striking similarity 

between the 𝑅 and 𝑆𝑢 profiles shown in Figs 4 and 2 respectively.

In forming a scale-decomposed skewness, Mathis et al, 2011 

showed that a constituent part of the skewness, 3𝑢𝐿
+𝑢𝑠

+2̿̿ ̿̿ ̿̿ ̿̿ ̿̿
 (where

�̿� =  �̅�/(𝑢2̅̅ ̅)
3

2 ), has a profile shape similar to 𝑅 which is perhaps

not surprising since the quantity 3𝑢𝐿
+𝑢𝑠

+2̿̿ ̿̿ ̿̿ ̿̿ ̿̿
 actually calculates the

correlation between 𝑢𝐿
+ i.e. the large scales and 𝑢𝑠

+2
, a

representative of the envelope of the small scales. 

Figure 4: Profile of amplitude modulation coefficient (𝑅𝑒𝜏 ≈
3200) 

Since the amplitude modulation of the near wall fluctuations 

by structures in the outer region contributes significantly to 

skewness, it is also of interest to examine the spectral 

decomposition of the skewness of the near-wall signal. Similar to 

the spectral decomposition of 𝑢2̅ via the autospecral density one

can also decompose the skewness in frequency domain using the 

higher order spectral estimate known as the bispectrum. The 

bispectrum is defined as, 
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𝐵𝑥𝑥𝑥(𝑓1
∗, 𝑓2

∗) = 𝐸 [𝑋𝑓∗
𝐶  𝑋𝑓1

∗𝑋𝑓2
∗]  where  𝑓∗ = 𝑓1

∗ + 𝑓2
∗ (2) 

where 𝐸[. ] denotes an expected value, 𝑋𝑓∗ a Fourier transform and

the superscript 𝐶 a complex conjugate. The frequencies have been 

normalized by the large eddy frequency 𝑓𝑖
∗ = 𝑓𝑖𝛿/𝑈∞. It is

straightforward to show that the real part of the bispectrum is 

related to  the skewness by, 

𝐸[𝑢3(𝑡)] = 𝑅𝑒(∑ 𝐵𝑥𝑥𝑥(𝑓1
∗, 𝑓2

∗) 
𝑓1

∗,𝑓2
∗ ) (3) 

The real part of the bispectrum provides the contribution to the 

skewness from spectral components 𝑓1
∗ and 𝑓2

∗. The decomposition

of the skewness in frequency domain via (3) can reveal information 

regarding the modes undergoing non linear interaction thereby 

providing a new  persepctive on the nature of the near wall 

modulation.  

Spectral Decomposition of Skewness. 

Due to symmetry properties, the bispectrum maps to 𝑓1
∗ and

𝑓2
∗ frequency domain shown in Figure 5.

Figure 5: Region of computation for cross bispectrum. The sum 

and difference interaction regions are also shown. 

The upper triangular Region I is associated with triad sum 

interactions. For example point A is associated with the interaction 

𝑓ℎ
∗ + 𝑓𝑘

∗ = 𝑓𝑠𝑢𝑚
∗ . In contrast, Region II is associated with

difference interactions.  For example,  point B corresponds to the 

difference interaction 𝑓𝑗
∗ − 𝑓𝑖

∗ = 𝑓𝑑𝑖𝑓𝑓
∗ . Interactions in region IIb 

result in difference modes at a freqeuncy less than the intereactimg 

modes. Interactions in region IIa results in difference modes at an 

intermediate frequency.  

Figure 6 presents iso-contours of the real part of the 

bisepctrum obtained in the near-wall region at 𝑦+ = 15. The real

part of the bispectrum shows contours in regions I, IIa and IIb. In 

Region I, sum interactions are indicated for a range of frequencies 

up to 𝑓1
∗ ≤ 8 with much lower frequencies 𝑓2

∗ ≤ 0.5 with many

peaks occuring near 𝑓2
∗ ≤ 0.25. These interactions are all of form

𝑓1
∗ + 𝑓2

∗ = 𝑓1
∗ + 𝛿𝑓∗ where 𝛿𝑓∗ ≈ 𝑂 (0.25). In region IIa a series

of difference interactions are indicated between modes 𝑓1
∗ ≤ 8 and

𝑓2
∗ ≥ −0.5. These are all of form 𝑓1

∗ − 𝑓2
∗ = 𝑓1

∗ − 𝛿𝑓∗ where again

𝛿𝑓∗ ≈ 𝑂 (0.25). Finally, in region IIb multiple difference

interactions are observed between modes and are of form 𝑓1
∗ −

𝑓2
∗ = 𝑓1

∗ − (𝑓1
∗ − 𝛿𝑓∗) = 𝛿𝑓∗.

Figure 6. Real part of the bispectrum of the signal of the location 

 𝑦+ = 15. The values are not normalized.

The spectral distribution of skewness reveals mutiple 

quadratic mode interactions that are local in frequency space in the 

sense that they involve neighboring Fourier modes whose 

difference in frequency 𝛿𝑓∗ ≈ 𝑂 (0.25) and this likely is

associated with the imprint of large-scale motions in the outer 

layer. 

Cross-Bicoherence Measurements 

In order to gain further insight regarding the nature of scale 

interactions between the outer and near wall regions two point 

cross-bisectral measurements were made. The cross-bispectrum 

between two signals x(t) and y(t) is given by 

𝐵𝑥𝑥𝑦(𝑓1
∗, 𝑓2

∗) = 𝐸[𝑌𝑓∗
𝑐  𝑋𝑓1

∗𝑋𝑓2
∗]   where  𝑓∗ = 𝑓1

∗ + 𝑓2
∗  (4) 

𝑋𝑓 and 𝑌𝑓 denote the Fourier transforms of x(t) and y(t),

respectively. The cross-bicoherence is the normalized version of 

the cross-bispectrum and is given by,  

𝑏𝑥𝑥𝑦
2 (𝑓1, 𝑓2) =

|𝐸[𝑌𝑓∗
𝑐  𝑋𝑓1

∗ 𝑋𝑓2
∗ ]|

𝐸 [ |𝑋𝑓1
∗ 𝑋𝑓2

∗ |
2

]𝐸 [ |𝑌𝑓
∗|

2
 ] 

(5) 

The cross-bicoherence measures the phase coherence between 

resonant wave triads in the two signals. Such phase coupling is 

required for nonlinear energy exchange. Here the cross-

bicoherence is calcualted for the case of two hot wire signals 

obtained simultaneously at 𝑦+ = 15 and 𝑦+ ≈ 200. Figure 7

shows the resulting 𝑏𝑥𝑥𝑦
2 (𝑓1, 𝑓2) which maps to the same 𝑓1

∗, 𝑓2
∗
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domain as shown in Figure 5. The 𝑦+ = 15 velocity fluctuation is

considered as x(t) and that at  𝑦+ ≈ 200 as y(t). This figure shows

phase coherence among wave triads only within a narrow band 

contained within the previously described region IIb.  These 

interactions are of all of form 𝑓1
∗ − 𝑓2

∗ = 𝑓1
∗ − (𝑓1

∗ − 𝛿𝑓∗) = 𝛿𝑓∗

where 𝛿𝑓∗ ≈ Ο(0.5). This indicates that there is interaction

between wave triads of two comparable and one much lower 

frequency. This might suggest that there is a phase locking between 

near wall small scale structure and larger structures of the outer 

layer. This result, along with the spectral decomposition of 

skewness presented earlier further underscores the importance of 

nonlinear mechanisms in characterizing the inner-outer layer 

interaction.  

Figure 7. Cross bicoherence of the signal of the location  𝑦+ = 15
and 𝑦+ ≈ 200.

A NONLINEAR SYSTEM MODEL 

The polyspectral measurements presented in the previous 

section underscore the importance of nonlinear mechanisms in the 

interaction between the logarithmic and near wall regions of the 

turbulent boundary layer. In order to further characterize this 

interaction, experiments are performed using a measurement 

technique in which the nonlinear spetral dynamics characterizing 

this interaction is captured in terms of a transfer funtion containing 

both linear and quadratically nonliner system elements. A similar 

approach has been used in plasma turbulence and in jet transition 

work (Thomas and Chu 1991). Two hot-wire probes are used for 

the measurement and their positioning is shown in Figure 9. The 

first probe is placed at 𝑦+ = 15, where primary turbulence peak

occurs. The second probe is placed in the log layer (𝑦+ ≈ 200) and

at the same horizontal location. One serves as the nonlinear system 

input and the other as the output. The nonlinear system is shown in 

Figure 10. The objective of the experiment is to  determine both 

the linear and nonlinear system elements for the natural as well as 

actuated turbulent boundary layer in both drag enhanced and drag 

suppressed states. Figure 9 also shows the relative position of the 

probe pair downstream of a flush mounted pulsed-DC actuator for 

the drag control. The current paper presents the methodology of 

estimating the transfer functions and quantities derivable from 

them. 

Figure 8: Schematic of the setup. 

The schematic of the system model is shown in figure 9. 

 Figure 9: Schematic of the system model. 

The input-output relation of the nonlinear system shown in 

figure 9 can be written as  

𝑌𝑓∗ = 𝐿𝑓∗𝑋𝑓∗ + ∑ 𝑄𝑓∗
𝑓1

∗, 𝑓2
∗

𝑓1
∗, 𝑓2

∗

𝑓∗=𝑓1
∗+𝑓2

∗

𝑋𝑓1
∗𝑋𝑓2

∗ + 휀𝑓∗ (6) 

where 𝐿𝑓∗  is the linear transfer function, 𝑄𝑓∗
𝑓1

∗, 𝑓2
∗

 is the quadratic 

transfer function and 휀𝑓∗  is an error term. The error term takes care

of all the errors accumulated due to neglect the higher order terms 

and the inherent noise present in the measurement. By multiplying 

Eq.6 by  𝑋𝑓
𝐶 we can write an expression for linear transfer function

𝐿𝑓 =
𝐸[𝑌𝑓∗𝑋𝑓∗

𝐶 ]−∑ 𝑄
𝑓∗
𝑓1

∗ , 𝑓2
∗

𝑓1
∗ , 𝑓2

∗ 𝐸[𝑋𝑓∗
𝐶  𝑋𝑓1

∗ 𝑋𝑓2
∗ ]− 𝐸[ 𝑓∗𝑋𝑓∗

𝐶 ]

𝐸[𝑋𝑓∗  𝑋𝑓∗
𝐶 ]

(7) 

In a similar fashion the quadratic transfer functions can be 

computed by multiplying Eq. 6 with 𝑋𝑓1
′

𝐶 𝑋𝑓2
′

𝐶  and taking an ensemble 

average  

𝐸 [𝑌𝑓∗𝑋𝑓1
′

𝐶 𝑋𝑓2
′

𝐶 ]  = 𝐿𝑓∗𝐸[𝑋𝑓∗𝑋𝑓1
′

𝐶 𝑋𝑓2
′

𝐶 ] +

∑ 𝑄𝑓∗
𝑓1

∗, 𝑓2
∗

𝑓1
∗, 𝑓2

∗ 𝐸[𝑋𝑓1
∗𝑋𝑓2

∗𝑋𝑓1
′

𝐶 𝑋𝑓2
′

𝐶 ] +  𝐸[휀𝑓∗𝑋𝑓1
′

𝐶 𝑋𝑓2
′

𝐶 ] (8) 

Where 𝑓∗ = 𝑓1
∗ + 𝑓2

∗ = 𝑓1
′ + 𝑓2

′

For a Gaussian process the equation (8) and (9) can be further 

simplified as third order moments are zero for such processes. 

𝐸[𝑋𝑓∗𝑋𝑓1
′

𝐶 𝑋𝑓2
′

𝐶 ] = 0 (9)
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For non-Gaussian processes the third order moments are non-zero 

and the examples have already been presented in the previous 

section (cross bispectrum). Equation (8) and (9) can be solved 

either by matrix method (Kim and Powers, 1988) or by iterative 

methods. In general the transfer functions can contain a large 

volume of information. Therefore it is useful to introduce 

normalized quantities to provide an easier interpretation of input-

output relationship. A convenient tool is coherency. It measures the 

fraction of the power in output signal which can be accounted by 

the linear and quadratic transfer function model. The total local 

coherency (Eqn. 10) is defined as sum of local linear coherency, 

local quadratic coherency, mixed local coherency and error terms 

and is equal to unity. 

𝛾𝐿
2(𝑓∗) + 𝛾𝑄

2(𝑓∗) + 𝛾𝐿𝑄
2 (𝑓∗) + 𝛾𝑛

2(𝑓∗) +< 𝑒𝑟𝑟𝑜𝑟 >= 1 (10) 

Local linear coherency measures fraction of power in the 

output signal at frequency 𝑓∗ due to the linear transfer function.

𝛾𝐿
2(𝑓∗) = |𝐿𝑓∗|

2 𝐸[𝑋𝑓∗𝑋𝑓∗
𝐶 ]

𝐸[𝑌𝑓∗𝑌𝑓∗
𝐶 ]

(11) 

Local quadratic coherency measures fraction of power in the 

output signal at frequency 𝑓∗ due to the quadratic transfer function.

𝛾𝑄
2(𝑓∗) = ∑ |𝑄𝑓∗

𝑓1
∗, 𝑓2

∗

|
2

𝑓1
∗, 𝑓2

∗

𝐸[|𝑋𝑓1
∗ 𝑋𝑓2

∗ |
2

]

𝐸[𝑌𝑓∗𝑌𝑓∗
𝐶 ]

(12) 

Mixed local coherency measures fraction of output power that 

results from a non-zero auto bispectrum of input signal. It captures 

the nonlinear history of the flow at the system input. 

𝛾𝐿𝑄
2 (𝑓∗) =

2 𝑅𝑒( 𝐿𝑓∗ ∑ [𝑄𝑘

𝑓1
∗ , 𝑓2

∗
]

𝐶

𝐸[𝑋𝑓∗𝑋
𝑓1

∗
𝐶 𝑋

𝑓2
∗

𝐶 ])𝑓1
∗ , 𝑓2

∗

𝐸[𝑌𝑓∗𝑌𝑓∗
𝐶 ]

(13) 

And the error term 

𝛾2(𝑓∗) =
𝐸[ 𝑓∗ 𝑓∗

𝐶 ]

𝐸[𝑌𝑓∗𝑌𝑓∗
𝐶 ]

(14) 

Using these metrics the outer layer-inner layer interaction can be 

quantified for both reduced and enhanced drag conditions and can 

be compared to the natural flow. 

SUMMARY AND CONCLUSIONS 

Measurements are presented in a zero pressure gradient 

turbulent boundary layer at 𝑅𝑒𝜏 = 3200 which are in very good

agreement with previous high Reynolds number experiments. 

Higher order spectra are used to characterize the nonlinear 

processes involved in the interaction between the near-wall and 

logarithmic regions. The frequency decomposition of the skewness 

of near wall fluctuations shows triad interactions between 

comparable frequencies and a much lower frequency that is 

characteristic of large-scale outer layer structure.  In addition, two-

point cross bicoherence measurements show nonlinear phase 

locking between modes in the near-wall and log regions. This 

provides motivation for a nonlinear system model of the inner-

outer layer interaction. A methodology for obtaining the linear and 

quadratically nonlinear transfer functions and physical quantities 

derivable from them is described.  
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