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ABSTRACT
Based on the results of a series of direct numerical simulations,

the effect of rotation on the orientation of vortical structures is in-

vestigated in homogeneous rotating and sheared turbulence. The

ratio of the rotation to shear rate is varied and flows without rota-

tion, with moderate rotation, and with strong rotation are consid-

ered. The rotation axis is oriented either in the parallel or anti-

parallel direction to the mean flow vorticity. For moderate rotation,

the anti-parallel configuration results in an increased growth rate of

the turbulent kinetic energy, while the parallel configuration leads

to a decreased growth rate as compared to shear flow without ro-

tation. Vortical structures inclined in the vertical direction and to

the downstream direction are observed and characterized using the

three-dimensional two-point autocorrelation coefficient of vorticity

magnitude. An ellipsoid is then fitted to the surface given by a con-

stant autocorrelation coefficient value and the major axis is used to

determine the inclination angle of flow structures in the plane of

shear. For moderate rotation, the structure inclination angle is ob-

served to reach a maximum value in the anti-parallel configuration

and to be reduced in the parallel configuration. The strongly rotat-

ing cases result in smaller structure inclination angles, which are

almost independent of the flow configuration. Therefore, the struc-

ture inclination angle of vortical structures appears to be directly

related to the dynamics of the flow.

INTRODUCTION
The results from a series of direct numerical simulations of ho-

mogeneous rotating and sheared turbulence are used here to study

the orientation of vortical structures present in such flows. Homoge-

neous rotating and sheared turbulence has been studied extensively

in the past due to its occurrence in many geophysical or engineer-

ing flows (see for example Miesch (2005)). Bradshaw (1969) and

Tritton (1992) found rotation to be destabilizing in the anti-parallel

configuration for the rotation to shear rate ratio range 0 < f/S < 1

and stabilizing otherwise. Based on linear theory, Cambon et al.

(1994) further investigated rotating and sheared homogeneous tur-

bulence and Salhi & Cambon (1997) pointed out that the Bradshaw

number B = f/S( f/S−1) is not sufficient to describe the flow evo-

lution. For example, the cases with f/S = 0, corresponding to pure

shear, and f/S = 1, corresponding to zero absolute vorticity, result

in the same Bradshaw number B = 0, but their evolution differs.

Comprehensive studies of rotating and sheared homoge-

neous turbulence include the work by Salhi & Cambon (1997),

Brethouwer (2005), and Jacobitz et al. (2008, 2010, 2016). These

studies cover a wide range of parameter regimes and report on many

aspects of the flow. For example, Jacobitz et al. (2008) addresses

inclined vortical structures present in the flows and Brethouwer

(2005) performs an analysis in a reference frame tilted into the di-

rection of the inclined structures. Linear theory has been applied by

Salhi (2002) and Kassinos et al. (2007) to investigate similarities

of the effect of rotation and stratification in turbulent shear flows.

Salhi et al. (2014) use direct numerical simulations and spectral lin-

ear theory to disentangle the linear and nonlinear dynamics of this

flow. Homogeneous turbulence dynamics in general are discussed

by Sagaut & Cambon (2008).

Structures in wall-bounded turbulent flows have been studied

starting with the work by Theodorsen (1952). Examples are stud-
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Figure 1. Schematic of flow with uniform shear and system rota-

tion.
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Figure 2. Evolution of the turbulent kinetic energy K in non-

dimensional time St for rotation to shear rate ratios ranging from

f/S =−5 to f/S =+5.
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Figure 3. Evolution of the normalized production rate P/(SK) in

non-dimensional time St for rotation to shear rate ratios ranging

from f/S =−5 to f/S =+5.

ies of streaks (see for example Bakewell & Lumley (1967) or Kim

& Lim (2000)) or bursting (see for example Kline et al. (1967) or

Wallace et al. (1972)). More recently, Dong et al. (2017) compares

structures in homogeneous turbulent shear flows with those in tur-

bulent channel flows. This paper also provides a comprehensive

review of work on structures in turbulent flows.

The main aim of this work is a quantitative description of the

inclination angle of vortical structures observed in homogeneous ro-

tating and sheared turbulence. In addition, the flow structure, as de-

scribed by the structure inclination angle, is related to the turbulence

dynamics, as described by the growth rate of the turbulent kinetic

energy. In the following, the simulation approach is introduced, ba-

sic features of the turbulence evolution are recalled, the inclination

angle of vortical structures is presented, and conclusions are drawn.

SIMULATION APPROACH
Direct numerical simulations of rotating and sheared homoge-

neous turbulence are performed in order to quantify the orientation

of vortical structures. The flow has vertical shear with constant rate
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Figure 4. Evolution of the normalized dissipation rate ε/(SK) in

non-dimensional time St for rotation to shear rate ratios ranging

from f/S =−5 to f/S =+5.
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Figure 5. Dependence of the growth rate γ , the normalized pro-

duction rate P/(SK), and the normalized dissipation rate ε/(SK) on

the rotation to shear rate ratio f/S at non-dimensional time St = 10.

S = ∂U/∂y and system rotation in the spanwise z−direction with

constant Coriolis parameter f = 2Ω (see figure 1). Hence, the sys-

tem rotation is perpendicular to the plane of shear and either parallel

or anti-parallel to the mean flow vorticity. The Cartesian coordi-

nates x = (x,y,z) = (x1,x2,x3) refer to the streamwise, vertical, and

spanwise directions, respectively.

The direct numerical simulations are based on the continu-

ity equation for an incompressible fluid and the unsteady three-

dimensional Navier-Stokes equation. The equations of motion for

the fluctuating velocities u = (u,v,w) = (u1,u2,u3) read:

∇ ·u = 0 (1)

∂u

∂ t
+u ·∇u+Sy

∂u

∂x
+Svex +2Ω×u =−

1

ρ0
∇p+ν∇2

u (2)

In these equations, p contains the pressure and the contribution from
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Figure 6. Vorticity magnitude in the plane of shear for a rotation

to shear rate ratio f/S =+0.5 at non-dimensional time St = 10.

the centrifugal force, ρ0 is the density, ν the kinematic viscosity,

and ex the unit vector in the downstream direction.

In the direct numerical simulations, all dynamically active

scales of the velocity field are resolved. The equations of motion

are solved in the Rogallo frame (see Rogallo (1981)) and periodic

boundary conditions are used. The spatial discretization is accom-

plished by a Fourier collocation method and the solution is ad-

vanced in time by a fourth-order Runge-Kutta method. The initial

conditions are taken from a simulation of decaying isotropic turbu-

lence with an initial Taylor-microscale Reynolds number Reλ = 56

and an initial shear number SK/ε = 2. The simulations are per-

formed on a parallel computer using 256×256×256 grid points.

RESULTS
The results of nine simulations of rotating and sheared homo-

geneous turbulence are used here to study the orientation of vortical

structures in such flows. The rotation to shear rate ratio f/S is var-

ied from −10 to 10. Negative values of f/S correspond to a parallel

configuration and positive values correspond to an anti-parallel con-

figuration between the system rotation and the mean flow vorticity

(see figure 1).

Flow Evolution
Figure 2 shows the evolution of the turbulent kinetic energy

K = 1/2(u2 + v2 +w2) in non-dimensional time St for cases with-

out rotation ( f/S = 0), with moderate rotation ( f/S = ±0.5), and

with strong rotation ( f/S = ±5). After an initial decay due to the

isotropic initial conditions, the case without rotation shows eventual

exponential growth of the turbulent kinetic energy K. For moderate

rotation, the anti-parallel case with f/S =+0.5 results in a stronger

growth of K as compared to the case without rotation, while the par-

allel case with f/S = −0.5 shows decay of K. For strong rotation

with f/S =±5, the decay of K is observed to be independent of the

flow configuration.

The transport equation for the turbulent kinetic energy K can

be written in the following non-dimensional form:

γ =
1

SK

dK

dt
=

P

SK
−

ε

SK
(3)

Here, γ is the growth rate of the turbulent kinetic energy K, P/(SK)
the normalized production rate with P =−Suv, and ε/(SK) the nor-

malized dissipation rate.

Figure 7. Vorticity magnitude in the plane of shear for a rotation

to shear rate ratio f/S =+0.5 at non-dimensional time St = 10.

Figures 3 and 4 show the evolution of the normalized produc-

tion rate P/(SK) and the normalized dissipation rate ε/(SK), re-

spectively. As a fictitious force, the Coriolis force does not appear

in the transport equation for K, but it has a significant effect on

the normalized production rate P/(SK). The normalized dissipation

rate ε/(SK), however, remains relatively unaffected by a variation

of the rotation to shear rate ratio f/S.

Figure 5 provides a snapshot of the terms in the turbulent ki-

netic energy transport equation at non-dimensional time St = 10. At

this time, the different terms have reached an approximately asymp-

totic value. While the normalized dissipation rate ε/(SK) remains

relatively unaffected by a variation of f/S, the normalized produc-

tion rate P/(SK) assumes a maximum for f/S = +0.5. Similarly,

the strongest growth rate γ of the turbulent kinetic energy is ob-

served for f/S = +0.5, while the growth rate for f/S = −0.5 is

less than that for the flow without rotation. For strong rotation, the

value of γ is almost unaffected by the flow configuration. More in-

formation about the energetics of the flow can be found in Jacobitz

et al. (2008).

Flow Structures
Figures 6 and 7 show the vorticity magnitude in the plane of

shear (x− y−plane) at non-dimensional time St = 10 for two anti-

parallel cases with f/S =+0.5, corresponding to moderate rotation

and growing turbulent kinetic energy, and with f/S = +5, corre-

sponding to strong rotation and decaying turbulent kinetic energy,

respectively. Please see Clyne et al. (2007) for information about

the visualization software. The figures show vortical structures in-

clined by an angle α in the vertical y−direction and to the down-

stream x−direction. The structure inclination angle α is larger for

the anti-parallel case with f/S =+0.5.

The three-dimensional two-point autocorrelation coefficient of

vorticity magnitude is used to quantify the structure inclination an-

gle of the vortical structures:

Coω (r) =
ω(x)ω(x+ r)

ω2
(4)

Here, r = (rx,ry,rz) is the separation vector. The three-dimensional

two-point autocorrelation coefficient of vorticity magnitude is cho-

sen for this analysis, because the autocorrelation is assumed to de-

crease the slowest in the direction of vorticity magnitude structures
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Figure 8. Isosurfaces of the three-dimensional autocorrelation co-

efficient of vorticity magnitude for a rotation to shear rate ratio

f/S =+0.5 at non-dimensional time St = 10.

present in the flow.

Figures 8 and 9 show isosurfaces of the two-point autocorrela-

tion coefficient of vorticity magnitude Coω at non-dimensional time

St = 10 for two anti-parallel cases with f/S =+0.5 and f/S =+5,

respectively. The domain is cut in the plane of shear at rx = 0. The

isosurfaces form approximately ellipsoid shapes, which grow with

decreasing isovalue of Coω .

Figures 10 and 11 show the isosurfaces of the three-

dimensional two-point autocorrelation coefficient of vorticity mag-

nitude for an autocorrelation coefficient value Coω = 0.3 in the

plane of shear at non-dimensional time St = 10 for two anti-parallel

cases with f/S =+0.5 and f/S =+5, respectively. In addition, an

ellipsoid least-square fit to the isosurfaces has been performed. The

orientation of the autocorrelation coefficient isosurfaces match the

structure inclination angles α of the original vortical structures. The

ellipsoid least-square fits very closely match the isosurfaces and the

major axes obtained from ellipsoid least-square fits allow for the

determination of the structure inclination angles α .

Figures 12 and 13 show the dependence of the structure in-

clination angle α on the two-point autocorrelation coefficient Coω

used in its determination at non-dimensional time St = 10 for two

anti-parallel cases with rotation to shear rate ratios f/S =+0.5 and

f/S = +5, respectively. In both cases, the structure inclination an-

gle value does not change substantially for an interval of autocorre-

lation coefficients ranging from about Coω = 0.15 to Coω = 0.45.

The figures also indicate the number of isovalues used in the least-

squares fit of the ellipsoid. For large autocorrelation coefficient val-

ues, only very few points are used to fit the ellipsoid and its orien-

tation is not always well-defined. For small values, the isosurface

does not resemble an ellipsoid shape.

Figure 9. Isosurfaces of the three-dimensional autocorrelation co-

efficient of vorticity magnitude for a rotation to shear rate ratio

f/S =+5 at non-dimensional time St = 10.

Structure and Dynamics

Figure 14 shows the dependence of the structure inclination an-

gle α on the rotation to shear rate ratio f/S. For moderate rotation,

the anti-parallel case with f/S = +0.5, corresponding to strongly

growing turbulent kinetic energy K, results in a structure inclina-

tion angle α larger than that observed for the case without rotation

( f/S = 0), while the parallel case with f/S =−0.5, corresponding

to decaying K, results in a smaller value of α . For strong rotation,

corresponding to strongly decaying K, the lowest values of α are

obtained and the values of α are almost independent of the flow

configuration. Hence, the dependence of the structure inclination

angle α on the rotation to shear rate ratio f/S matches the depen-

dence of the growth rate γ of the turbulent kinetic energy on f/S,

shown in figure 5.

Figure 15 shows the dependence of the structure inclination an-

gle α on the growth rate γ . An approximately linear relationship of

the two quantities is obtained: Strongly growing cases are charac-

terized by a large structure inclination angle, while decaying cases

have a small structure inclination angle. Therefore, it seems that the

eventual evolution of rotating and sheared homogeneous turbulence

is directly related to the orientation of the vortical structures present

in the flow.

The described analysis has been repeated using the magnitude

of velocity instead of the magnitude of vorticity and the results are

also shown in figures 14 and 15. The structure inclination angles ob-

tained using the velocity magnitude are slightly smaller than those

obtained using the vorticity magnitude. The dependence on the ro-

tation to shear rate ratio f/S is maintained. Also, the dependence

on the growth rate is also linear, but the relationship appears to have

a smaller slope.
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Figure 10. Isosurface and ellipsoid fit of the three-dimensional

autocorrelation coefficient of Vorticity magnitude for a value of

Coω = 0.3 in the plane of shear for a rotation to shear rate ratio

f/S =+0.5 at non-dimensional time St = 10.

Figure 11. Isosurface and ellipsoid fit of the three-dimensional

autocorrelation coefficient of Vorticity magnitude for a value of

Coω = 0.3 in the plane of shear for a rotation to shear rate ratio

f/S =+5 at non-dimensional time St = 10.

SUMMARY
Using the results of direct numerical simulations of homoge-

neous rotating and sheared turbulence, the orientation of vortical

structures present in the flows is determined using isosurfaces of

three-dimensional two-point autocorrelation coefficients of vortic-

ity magnitude. The isosurfaces have an approximately ellipsoid

shape and the inclination angle of the vortical structures are deter-

mined from the major axes of an ellipsoid least-squares fit to the

isosurfaces.

The structure inclination angle α was observed to depend on

the rotation to shear rate ratio f/S in the same fashion as the growth

rate γ depends on f/S. An approximately linear relationship be-

tween the structure inclination angle and the growth rate of the tur-

bulent kinetic energy was obtained.

Therefore, the structure of rotating and sheared homogeneous

turbulence, as described by the structure inclination angle α , is di-

rectly related to the dynamics of the turbulent motion, as described

by the growth rate γ of the turbulent kinetic energy. These results

are in agreement with the findings by Jacobitz & Moreau (2016) for
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Figure 12. Dependence of the structure inclination angle α on the

choice of the isovalue of the three-dimensional autocorrelation co-

efficient of vorticity magnitude Coω for a rotation to shear rate ratio

f/S =+0.5 at non-dimensional time St = 10.

0 0.2 0.4 0.6 0.8 1

Co

0

5

10

15

20

25

30

35

40

α

200

400

600

800

1000

1200

1400

Figure 13. Dependence of the structure inclination angle α on the

choice of the isovalue of the three-dimensional autocorrelation co-

efficient of vorticity magnitude Coω for a rotation to shear rate ratio

f/S =+5 at non-dimensional time St = 10.

stably stratified turbulent shear flows.
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