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Turbulent drag reduction by wavy wall
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ABSTRACT
Fully-developed turbulent flow in channels with oblique wavy

walls is analysed, from a drag-reduction perspective, by means of
Direct Numerical Simulations (DNS). The wavy geometry is cho-
sen to emulate the shear strain produced by a Spatial Stokes Layer
(SSL) generated by oscillatory wall motion. As the cost of perform-
ing a parametric optimisation is prohibitive, an alternate solution is
presented, based on a linear model of a perturbed plane-channel
flow, using a turbulent viscosity. Flow properties and levels of drag
reduction or increase are reported for various configurations.

INTRODUCTION
As civilian aircraft manufacturers strive towards greener and

more cost-efficient aviation, reducing turbulence-induced drag is a
major target, as it accounts for about 50% of the total drag in cruise
conditions. Motivated by the fact that even small drag reductions
yield significant fuel savings, researchers have actively sought ways
of controlling turbulence in order to reduce the drag. Amongst a
range of techniques developed over the past few decades, imparting
a spanwise oscillatory wall motion was first shown by Jung et al.
(1992) to yield a significant reduction in streamwise wall friction.
This original method of streamwise-homogeneous spanwise forc-
ing was generalized by Quadrio (2011) to travelling waves, wherein
the wall velocity is also space-dependent: W (x, t) = Asin(2π/λxx−
ωt). Although this control technique proved, by computations, to
be very effective at reducing the viscous drag, practical applications
are severely hindered by the absence of an efficient and maintain-
able actuation device. So far, in terms of net energy savings taking
the total power supplied to the actuator into account, the most ef-
ficient laboratory implementation of the oscillating-wall technique
has been achieved by Gatti et al. (2015). However, only small forc-
ing amplitudes were permitted by the actuator, thus yielding a gross
drag-reduction level of only 2.4% for the best case, for which the
power of the actuation devices surpassed this reduction, thus ren-
dering the overall net energy balance negative.

In the case of standing waves ω = 0, i.e. for steady forcing,
Viotti et al. (2009) showed that the so-called Spatial Stokes Layer
(SSL), resulting from the in-plane wall motion, was more efficient
than purely oscillating walls, yielding greater net energy savings,
if a perfect actuator was assumed. Building on the steady na-
ture of this actuation, Chernyshenko (2013) suggested the use of
a skewed wavy wall in order to emulate a SSL. Forced obliquely
across the wavy wall, the flow undergoes a spatially-varying pres-

sure gradient, thereby giving rise to a spatially varying spanwise
motion without any active actuation. The key premise of the analy-
sis in Chernyshenko (2013), based on earlier work on wall-actuated
control, is that the drag reduction is not a consequence of the
spanwise velocity itself, WSSL(x) = ASSL sin(2π/λx x), but rather of
the associated shear strain ∂WSSL/∂y. Using semi-empirical esti-
mates, Chernyshenko (2013) determined that a wave of the form
hw(x,z) = Aw sin(2π/λx x+2π/λz z), with λ+

x = 1520, at an angle
of approximately 52◦, was a good candidate for achieving a worth-
while level of drag reduction. The relatively long wavelength and
the passive nature of the device promise, if proven effective, to be
a significant step towards practical realisations of turbulent drag re-
duction. The main goal of the work presented herein is to seek a
wavy-wall configuration capable of reducing the total drag, when
compared to that experienced on a flat plate.

The structure of this paper is divided into two parts: first, direct
numerical simulations of the flow are presented and the total drag
is quantified, and second, a semi-empirical model is formulated in
order to seek a configuration with maximum drag reduction.

NUMERICAL EXPERIMENTS
Description of the simulations

Direct numerical simulations have been performed using the
code STREAMLES, a finite-volume, second-order accurate incom-
pressible Navier-Stokes solver. The computed configuration is a
wavy channel, of half-height h, with both solid walls undulating in
phase. An integer number of waves is accommodated in the domain,
allowing spanwise periodicity to be retained in both wall-parallel
directions. The parameters defining the wavy surface are shown in
fig. 1. In what follows, a flow configuration will be defined as a set
of values (Aw,λ ,θ).

A total of eight simulations, at Reτ ≈ 360, are presented below:

- W0 corresponds to the configuration arising from the approach
of Chernyshenko (2013);

- simulations W1A* (W1A1 to W1A4) correspond to the same
wave as W0, but at a different angle, and

- W2A* features a smaller wavelength and is at the same angle
as W1A*.

Evaluation of the drag
The steady spanwise forcing, caused by the presence of the

wavy boundaries, is expected to reduce the friction drag if the em-
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Figure 1. Parameters of the flow configuration, which can equivalently be defined by (Aw,θ ,λ ) or (Aw,λx,λz); λx and λz are, respectively,
the streamwise- and spanwise-projected wavelengths of the wavy wall.

Table 1. Drag quantification for the simulations presented. Rela-
tive variations with respect to the drag level in the baseline flow are
given: Friction Drag Reduction (FDR), Pressure Drag (PD), Total
Drag (TD). Negative values of TD indicate drag reduction. Viscous
units are based on the baseline friction velocity.

λ+ θ A+
w FDR PD TD

W0 918 52◦ 18 4.8% 8.0% +3.2%

W1A1 918 70◦ 11 0.7% 0.5% -0.3%

W1A2 918 70◦ 18 2.0% 1.3% -0.7%

W1A3 918 70◦ 22 2.6% 2.0% -0.6%

W1A4 918 70◦ 32 4.2% 5.0% +0.7%

W2A1 612 70◦ 7 0.6% 0.5% -0.1%

W2A3 612 70◦ 14 2.1% 2.1% -0.0%

W2A4 612 70◦ 22 3.4% 4.2% +1.5%

ulation of a SSL is successful. Unlike in the SSL case, there is no
power expended at the solid wavy wall, rather, the penalty for the
generation of the drag-reducing spanwise motion is pressure drag.
The net drag reduction / increase is thus obtained as the difference
in total (skin-friction and pressure) drag of the wavy channel rela-
tive to the baseline plane channel. In order to reduce the impact of
numerical errors on the quantification of the drag-reduction level,
the computational grid for the baseline channel is chosen to be the
same as that for the wavy channel, except for the vanishing am-
plitude Aw = 0. Because the absolute value of the drag depends
slightly on the numerical resolution, despite the use of a grid finer
than usually adopted for channel-flow DNS (the finest resolution is
∆x+ = ∆z+ < 2), the effect on the modest drag-reduction/increase
levels is observed to be non-negligible, and the results therefore
have to be treated with care. In each case, the drag is obtained by
integration of the pressure and wall shear stress over the two wavy
surfaces. This is then verified by comparison with the total pressure
gradient across the streamwise computational box.

Table 1 gathers the main results. These indicate that a drag-
reduction level of almost 1% could be attained for certain com-
binations of parameters. Interestingly, it is observed that the
configuration W0, indicated as being the best by the analysis of
Chernyshenko (2013), actually results in drag increase for θ = 52◦,
but the same geometry at θ = 70◦ (W1A2) yields a positive drag
reduction.

Figure 2. Friction-drag reduction (FDR) from the baseline for
SSL (gray symbols extracted from a digitised plot of Viotti et al.
(2009), upper curve: A+

SSL = 2; lower curve: A+
SSL = 1) and

for wavy wall; lozenges: W1A* (λ+ = 918), squares: W2A*
(λ+ = 612).

Comparison with SSL
The wavy boundary creates a spatially-periodic spanwise pres-

sure gradient that gives rise to a spanwise motion. The waves also
generate a streamwise pressure gradient, causing acceleration of
the fluid on the windward side of the wave and deceleration on
the leeward side. The amplitude of the spanwise motion gener-
ated by the wavy wall is smaller than the change in the stream-
wise velocity. This results in a fundamental difference between
wavy walls and SSL, but despite the absence of a one-to-one cor-
respondence between the wavy-wall configuration (Aw,λ ,θ ) and
an ideally equivalent SSL configuration (ASSL,λx = λ/cosθ), it is
observed that the shear-strain field for streamwise-wave-slope val-
ues of Aw/λx ≈ 0.012 and Aw/λx ≈ 0.007 approximately emulates
SSL’s at same λx and respective forcing amplitudes A+

SSL = 1 and
A+

SSL = 2.
The friction-drag-reduction level of each configuration is com-

pared to that of the SSL case in fig. 2. For ASSL = 1, the friction
reduction obtained in the SSL case is in line with what is obtained
with a wavy wall with a streamwise wave slope of about 0.007.
However, at the largest wave slope, despite the phase variations of
the spanwise shear strain being of the same order as that of the SSL,
a much lower level of friction-drag reduction is achieved. Thus, the
emulation of the effect of the Stokes layer is not as successful for
larger wave heights.
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As a conclusion on the observations that can be made from the
DNS results, it is observed that some wavy-wall channel configura-
tions may have a slightly lower drag than the plane-channel base-
line. Also, the spanwise shear-strain is approximately comparable
to that of a Stokes layer, thus supporting the assumption that the
friction is reduced by a similar mechanism. For small wave heights,
the friction reduction achieved by the wavy wall is comparable to
that achieved by the SSL for a similar spanwise shear-strain ampli-
tude. However, this is not the case for larger wave heights for which
the friction reduction is much lower than that of the SSL, thus indi-
cating the presence of a different mechanism, which would explain
why the configuration W0 is not effective.

SEMI-EMPIRICAL MODEL
A simplified model of the wavy-channel flow is formulated by

assuming a gentle sinusoidal perturbation of a plane channel. A
geometric wavy perturbation, as shown in fig. 1, is applied at both
walls, so that the distance between the walls is constant everywhere
and equal to 2h. Reynolds-averaged Navier-Stokes equations, incor-
porating an eddy-viscosity model, are linearized in a transformed
coordinate system and solved by a direct matrix inversion.

With time-averaging denoted by an overbar, and the Kronecker
delta function identified by δi j, the modelled equations, with veloc-
ity and pressure written in wall units, are


∂

∂x j

[
ui u j + pδi j−

1+νt

Reτ

(
∂ui

∂x j
+

∂u j

∂xi

)]
= 0

∂ui

∂xi
= 0

. (1)

The linear perturbation of the plane-channel flow considered is

qqq(x,y,z) = qqq000 +Aw ℜ(q̂qq(η)exp[i(kx x+ kz z)]) = qqq000 + q̃qq, (2)

where ℜ denotes the real part, η = (y−hw)/h the wall-normal lo-
cation, ranging from -1 at the lower wall, to 1 at the upper wall,
and q̂qq = [û, v̂, ŵ, p̂]T is the solution vector of the linear system.
The phase variations, i.e. free of the streamwise- and spanwise-
integrated mean contributions, are q̃qq; qqq000 = [U(η),0,0,−Px x]T , with
Px = 1 the driving pressure gradient normalised by the friction
velocity, and U(η) is the plane-channel velocity profile obtained
from the RANS equations for Aw = 0 (similar to equation (2.1c) in
Reynolds & Tiederman (1967)):

1+
d

dη

[
1+νt

Reτ

dU
dη

]
= 0. (3)

The eddy viscosity, shown in fig. 3, normalised by the fluid
viscosity, is a function of the wall-normal coordinate only, and is
defined using two constants c1 and c2 as in Moarref & Jovanović
(2012):

νt =
1
2

√1+
{

c2

3
Reτ

[
1−η2

][
1+2η2

][
1− exp

(
−Reτ

1−|η |
c1

)]}2
−1

.
(4)

Next, the expression in equation eq. (2) is inserted into the
RANS equations eq. (1) and only the first-order terms are retained.
With the operator M defined as

M = ikx U− 1+νt

Reτ

[(
d2

dη2 −‖kkk‖
2
)
+

ν ′t
1+νt

d
dη

]
, (5)

Figure 3. Eddy-viscosity as defined in eq. (4), for c1 ∈ {29,45}
and c2 = 0.46; continuous line: c1 = 29, dashed line: c1 = 45.

where primes denote differentiation with respect to η , and
kkk = [kx,kz]

T , the linearised set of equations can be written in ma-
trix form as



ikx
d

dη
ikz 0

M U ′− ikx
ν ′t

Reτ

0 ikx

0 M 0
d

dη

0 −ikz
ν ′t

Reτ

M ikz





û

v̂

ŵ

p̂


=



−ikx U ′

kx U U ′− iU ′‖kkk‖2 1+νt

Reτ

0

0


,

(6)
where the first three rows correspond to the momentum equations
and the last one to the continuity equation. The system eq. (6) is
inverted by direct matrix inversion with a one-dimensional second-
order finite-difference discretisation used for the derivatives.

Model-predicted profiles of the velocity components and pres-
sure at various phases are shown in fig. 4. Fair agreement is
observed with DNS at Reτ ≈ 360 using a different eddy viscos-
ity for the prediction of the streamwise and spanwise velocities
(c1 = 45,c2 = 0.46), from that of the wall-normal velocity and pres-
sure (c1 = 29,c2 = 0.46).

Next, the linear model is used to find an estimate of the optimal
set of parameters. An important feature of the present approach is
that the linear model is not used to predict the total drag level di-
rectly. Instead, the drag variation (relative to the baseline drag) is
split into pressure and friction contributions, each one being evalu-
ated separately, as described below.

The friction drag is estimated indirectly by assuming that the
reduction in friction is similar to that of a SSL at the same λ+

x ,
and A+

SSL = 1. An estimate of this value is given by a fit, denoted
FDRSSL(λx), of the data given in Viotti et al. (2009) at A+

SSL = 1, as
shown in fig. 5. The latter depend on λx only, and they are rescaled
to account for the higher Reynolds number, viz. Reτ = 360 instead
of 200, assuming that the drag-reduction level achieved by the SSL
degrades with Re−0.2

τ , yielding the final expression for the friction-
drag reduction (FDR):

FDR = FDRSSL(λx)

(
Reτ

200

)−0.2
. (7)

The pressure drag is estimated by integration of the pressure
along the wave. The relative variation from the baseline drag for
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Figure 4. Comparison of the phase variations of the velocity components and pressure fields from the linear solver (dashed black line) and the 
DNS W1A2 (continuous blue line). Predictions for the streamwise and spanwise velocities are made with a different eddy viscosity (c1 = 45) 
than that used for the prediction of the wall-normal velocity and pressure (c1 = 29).
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Figure 5. Curve fit to friction-drag reduction at Reτ = 200, used
to estimate the equivalent drag reduction for the wavy-wall config-
uration (eq. (7)). Gray circles: data from Viotti et al. (2009), black
line: fit of the numerical data used in the model.

Figure 6. Pressure drag obtained from the linear model (lines),
and from DNS (symbols); lozenges and dashed line: λ+ = 918,
squares and continuous line: λ+ = 612.

the pressure drag becomes after integration:

PD =
π

λx
ℜ [p̂(−1)] A2

w. (8)

The pressure drag calculated from the above equation is compared
to the value obtained from DNS in fig. 6. For small wave slopes
(2Aw/λ < 0.05), the prediction of the pressure drag agrees within
less than 0.2% of the baseline drag.

In order to estimate the optimum parameter combination, the
parameter plane (θ ,λ ) is covered by a set of discrete combinations.
For each combination, the required height of the wavy wall Aw is
estimated, so that the maximum value of the spanwise velocity is
constant, equal to W+

max = 0.85, this value is close to that of the con-
figuration W1A2, and yields a shear-strain field approximately sim-
ilar to that of a laminar SSL with A+

SSL = 1. The drag contributions
are estimated from eqs. (7) and (8). Fig. 7 shows the resulting map
of the overall drag reduction, which presents an optimum close to
(θ ,λ+) = (70◦,700), of about 0.8%. The implications of the semi-
empirical results are twofold: first, the maximum drag-reduction
level estimated is not large for such a small amplitude of actuation,
and second, the trend is not consistent with the DNS results. In-
deed, in table 1, for the two wavelengths λ+ = 918 and λ+ = 612,
simulations W1A2 and W2A3 feature a spanwise shear-strain com-

parable to that of a SSL at A+
SSL = 1, but, whilst the drag reduction

in W1A2 is of 0.7%, i.e. close to the semi-empirical prediction, it
is about null for W2A3, contradicting the prediction of 0.8%. As
shown in fig. 7, the achievable magnitude of drag reduction by a
wavy wall, as predicted by the semi-empirical model, is quite small.
In this respect, this is a conclusion similar to that obtained with a
different semi-empirical model in Chernyshenko (2013).

Figure 7. Estimation of the total drag reduction DR = FDR−PD
(in percent) using the semi-empirical model, assuming the wavy
wall emulates a SSL of forcing amplitude A+

SSL ≈ 1; symbols: DNS
data (W1A2 and W2A3) coloured by the drag-reduction level.

CONCLUSIONS
Channel flow with oblique wavy walls, proposed as a means

of emulating the drag reduction induced by a wall-actuated Stokes
layer, was investigated by a combination of DNS and a semi-
empirical model of the linearized Reynolds-averaged Navier-Stokes
equations with prescribed eddy viscosity. A few promising flow
configurations were selected and simulated at very high resolu-
tion. Such simulations are significantly more challenging than usual
DNS of plane channels with actively induced Stokes layers – which
feature much higher drag-reduction levels – consequently requir-
ing substantially larger computational resources in order to reach
sufficient accuracy that allows a fair estimation of drag-reduction
levels that arise as a difference between friction-drag decrease and
pressure-drag increase. The semi-empirical model was formulated
in order to guide DNS studies towards parameter combinations that
yield low-drag levels. The present analysis is adopted as an alterna-
tive to a formal shape optimisation, which was not tractable within
the resources available. The model is able to reproduce the main
features of the flow, and yields a good estimate of the pressure drag
for small wave slopes. However, the analogy between the wavy
wall and the SSL is tenuous, the wavy wall being less effective at
reducing the friction. For small wave amplitudes, the behaviour is
fairly close to that of the SSL, and this was exploited to derive a
drag-reduction map for the wavy wall based on the properties of a
SSL at a forcing amplitude of A+

SSL = 1. Regardless of the accuracy
of the semi-empirical models, they suggest, along with the DNS re-
sults, that the optimum configuration is unlikely to yield maximum
net drag reduction in excess of about 1%.
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