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Abstract
The turbulence statistics and structures of a self-similar

adverse pressure gradient turbulent boundary layer (APG-
TBL) are investigated using direct numerical simulation
(DNS) of the flow at the verge of separation. The desired
self-similar APG-TBL is achieved by a modification of the
far-field velocity boundary condition. The required wall-
normal velocity in the far-field to produce the necessary ad-
verse pressure gradient was estimated based on the analy-
tical free-stream streamwise velocity distribution for a flow
at the point of separation, and the assumption that the stre-
amlines of the outer flow follow the growth of the boundary
layer thickness. The APG-TBL develops over a momentum
thickness based Reynolds number upto 12000, and achieves
a self-similar region of constant friction coefficient, pres-
sure velocity and shape factor. Turbulence statistics in this
region show self-similar collapse by using the scaling of
the external velocity and the displacement thickness. In this
study, the structure of the APG-TBL is investigated using
topological methodology and visualisation techniques for a
zero pressure gradient turbulent boundary layer (ZPG-TBL)
and for the self-similar APG-TBL. The second invariants of
the velocity gradient tensor (VGT), which are representative
of coherent structures dominated by vortical motions, show
a stark difference in the structure and location of coherent
vortical structures that exists between the self-similar APG-
TBL and a ZPG-TBL. Further details based on the struc-
ture and distributions of the invariants of VGT and intense
Reynolds stress structures of the self-similar APG-TBL are
presented.

Introduction
The turbulent boundary layer (TBL) subjected to

strong adverse pressure gradient (APG) is frequently found

to be challenging as it pertains to flow separation prediction,
development of appropriate turbulence models for the effi-
cient design and flow control. Many aspects of turbulent
structures in APG-TBL flows and the scaling of turbulence
statistics remain unresolved. As wall-bounded flows appro-
ach separation, the classical inner wall scaling using the
friction velocity, uτ , is not applicable and the flows with
strong APG resemble free-shear flows. Some attempts for
determining the appropriate length and velocity scale in
strong APG-TBLs have been reported in comparison with
free shear flows (Gungor et al., 2016). However, the condi-
tions of the upstream flow also contaminates experimental
measurements and statistics profile obtained by simulations,
so that the appropriate scaling remains an open question.

Here, we focus on canonical self-similar APG-TBL,
in the sense that each of the terms in the governing equa-
tions have the same proportionality with streamwise posi-
tion (Townsend, 1976, 1960; Mellor & Gibson, 1966; Cas-
tillo & Wang, 2004). An achievement of a self-similar
APG-TBL minimises the effect of upstream flow and his-
tory (Kitsios et al., 2015, 2016), and detailed information on
the large-scale motions and the distribution of small-scale
vortices would shed light on the characteristics of simple
APG-TBLs.

In this paper, the structure of TBLs is investigated
using topological methodology and visualisation techniques
(Chong et al. (1998); Soria & Cantwell (1994); Soria et al.
(1994)) for a zero pressure gradient turbulent boundary
layer (ZPG-TBL) and for the self-similar APG-TBL. The
second invariants of the velocity gradient tensor (VGT),
which is representative of coherent structures dominated
by vortical motions, shows a stark difference in the struc-
ture and location of coherent vortical structures that ex-
ists between the self-similar APG-TBL and a ZPG-TBL.
Further details based on the structure and distributions of
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the invariants of VGT and intense Reynolds stress structu-
res (Lozano-Durán et al., 2012; Lozano-Durán & Jiménez,
2014; Soria et al., 2016; Dong et al., 2017) of the self-
similar APG-TBL and how these compare to the ZPG-TBL
are also presented.

Numerical Methodology
The boundary layer is simulated in a three-dimensional

rectangular domain over a no-slip smooth wall. The axes in
the streamwise, wall-normal and spanwise directions are x,
y and z. The corresponding velocity fluctuation with respect
to the time-averaged mean (U , V , W ) are (u, v, w). The
spanwise boundary condition is periodic, and the Fourier
expansion with 2/3 dealiasing is applied. The compact fi-
nite differences in staggered grids are used in x and y (Lele,
1992). The direct numerical simulation (DNS) is perfor-
med by the code of Borrel et al. (2013). We use modified
version of the recycling method introduced by Sillero et al.
(2013), and the desired self-similar APG-TBL is achieved
by a modification of the far-field velocity boundary condi-
tion. The required wall-normal velocity in the far-field to
produce the necessary adverse pressure gradient was esti-
mated based on the analytical free-stream streamwise velo-
city distribution for a flow at the point of separation (Mellor
& Gibson, 1966)

Ue(x) ∝ xm with m =−0.23, (1)

and the assumption that the streamlines of the outer flow
follow the growth of the boundary layer thickness.

The reference velocity,

Ue(x)≡UΩ(x,ymax), UΩ(x,y)≡−
∫ y

0
Ωz(x,y′)dy′ (2)

where Ωz is the mean spanwise vorticity and ymax is the
wall-normal position of maximum UΩ. The displacement
and momentum thickness are defined using spanwise vorti-
city Lighthill (1963) as:

δ1(x) =
−1
Ue

∫ ymax

0
yΩz(x,y)dy, (3)

δ2(x) =
−2
U2

e

∫ ymax

0
yUΩΩz(x,y)dy−δ1(x). (4)

The Reynolds number is Reδ1 ≡ Ueδ1/ν , where ν is the
kinetic viscosity.

The domain of interest (DoI) of the strong APG-TBL
is chosen as the region where the shape factor is H ≈
2.35. Hereafter, xDoI denotes the beginning of DoI, where
Reδ1(xDoI) = 4800 for ZPG- and a mild APG-TBL (β = 1,
Kitsios et al. (2016)), and Reδ1(xDoI) = 22200 for a strong
APG-TBL (β = 39, Kitsios et al. (2017)). β is the nondi-
mensional pressure gradient by Clauser (1954).

Results
Self-similar statistics

By using above reference velocity and outer scale, Ue
and δ1, the turbulence statistics of the strong APG-TBL col-
lapses within the domain of interest as shown by Kitsios

et al. (2017). Figure 1(a–c) show the averaged velocity
fluctuations and the tangential Reynolds stress τxy ≡−〈uv〉,
and the data of mild APG-TBL, ZPG-TBL and a channel
database at Reτ ≈ 4200 (Lozano-Durán & Jiménez, 2014),
whose displacement thickness is δ1 = 0.094h from eq. (3),
are also compared. It is indicated that velocity fluctuations
in a strong APG-TBL, which does not have logarithmic re-
gion, are mainly produced in the outer layer.

The driving mechanism of strong APG-TBL is the
local shear as in the wall-bounded turbulence (Jiménez,
2013). Figure 1(d) shows the Corrsin shear parame-
ter (Corrsin, 1958), Sc ≡ (∂U/∂y)q2/ε , where q2 ≡ u2 +
v2 + w2 and ε is the dissipation rate, as a function of
y/δ1(x), in comparison with the other wall-bounded tur-
bulence. The typical value in the outer region is Sc ≈ 7–
10 both in homogeneous shear turbulence (HST) (Sekimoto
et al. (2016)) and in the logarithmic layer of wall-bounded
flows (Jiménez, 2013). The near-wall peak of APG-TBL
decreases as the layer grows (not shown), and the weaker lo-
cal mean shear close to the wall would not generate intense
turbulence structures. On the other hand, in the outer re-
gion y/δ1 ≈ 1, Sc is roughly constant value (Sc ≈ 9) in good
agreements with both HST, turbulent mixing layers (Wyg-
nanski & Fiedler, 1970) and at the top of the logarithmic
layer in wall-bounded turbulence.

Topological analysis and flow visualisation
The topological methodology is applied at each y/δ1 ≈

0.1 0.3 and 1.0 of a strong APG-TBL and ZPG-TBL (y+ ≈
20, 60 and 300 for ZPG-TBL). The self-similar scaling of
the small-scale property, ω ′ ≡ √ωiωi, in the turbulent ou-
ter region is estimated from the approximate energy balance
of kinetic energy and self-similar scaling, νω ′2 ≈−τxyS ≈
U3

e /δ1, where ν is the kinematic viscosity, and τxy is the tan-
gential Reynolds stress and S = ∂U/∂y is the mean shear.
Then the invariants are estimated as Q ∼ Reδ1

U2
e /δ 2

1 and

R∼ Re3/2
δ1

U3
e /δ 3

1
The figure 4 shows the joint probability density

function of the second and third invariant of the velocity
gradient tensor, which clearly indicates that the dissipative
fine-scale vortices are generated at y/δ1 ≈ 1 in APG-TBL,
at which the peaks of the velocity fluctuations are obser-
ved. On the other hand, the near-wall mean shear generates
strong vortical structures for ZPG-TBL.

The instantaneous three-dimensional geometry of the
self-similar APG is visualised in figure 4. The isosurfaces
of intense Reynolds stress seem to be separated from the
wall and that is true for the fine-scale vortex clusters repre-
sented by isosurfaces of the second invariant of the velocity
gradient tensor. Most of events are generated in the outer
region of APG-TBL, and the interaction of the local shear
and the Reynolds stress (uv-structures) are of great interest,
in comparison with those in a mild APG or zero-pressure-
gradient (ZPG) TBL, turbulent mixing layer and homoge-
neous shear turbulence (HST).

Intense Reynolds stress
As shown in figure 4(a), the intense Reynolds stress

structures (uv-structures) are detached from the wall and
that is true for the fine-scale vortex clusters represented by
isosurfaces of the second invariant of the velocity gradient
tensor (as shown in figure 4(b)).

Ejections (Q2) and sweeps (Q4) are identified by τ∗xy <

−Cτ u∗v∗, where τ∗xy = 〈uv〉/(Ue(x)2), u∗ = u/Ue(x), v∗ =
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v/Ue(x) and Cτ is a constant threshold. As shown in fi-
gure 4(a,c), the volume fraction and the scaled stress condi-
tioned on the uv-structure indicate that ejections and sweeps
are balanced at a symmetric point, y/δ1 ≈ 0.88, for a strong
APG-TBL (β = 39), and at y/δ1 ≈ 1.35 for a mild APG-
TBL (β = 1), independently of Cτ . Here we define such
distance from the wall as δs, which corresponds to the loca-
tion of an inflection point of the mean velocity profile in the
outer layer. Ejections mainly interact with the free stream at
around y/δs & 2, and on the other hand, sweeps have larger
contributions on the Reynolds stress than ejections below
the symmetric points, y/δs < 1. The wall effect is limited
within y/δs . 0.5 for both mild and strong APG-TBL. The
mild APG-TBL has another balanced point near the wall, at
which the near-wall peaks of velocity fluctuations and the
energy production are observed, and on the other hand, the
strong APG-TBL at the verge of separation does not repre-
sent such a near-wall effect and it behaves like more or less
a free shear flow.

At the end, contributions of intense Reynolds stress
structures on the statistics are shown in figure 4(b,d). These
percolation analysis of Q2s and Q4s indicate that, as in-
creasing Cτ , strong large-scale structures are organised at
around a inflection point in the outer region, producing
outer-layer peaks of velocity fluctuations. These results are
consistent with those obtained in the experiments (Krogstad
& Skåre, 1995; Schatzman & Thomas, 2017). Further in-
vestigations on the intense Reynolds stress structures in the
self-similar APG-TB are on-going.
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Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numeri-
cal simulation of statistically stationary and homogene-
ous shear turbulence and its relation to other shear flows.
Phys. Fluids 28, 035101.
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Figure 1. (a) The streamwise velocity fluctuation uu/U2
e , (b) The vertical velocity fluctuation vv/U2

e ,(c) the Reynolds stress
−uv/U2

e as a function of y/δ1: (black) ZPG-TBL; (blue) mild APG-TBL (β = 1); (red) strong APG-TBL (β = 39); (green)
channel turbulence at Reτ ≈ 4200 Lozano-Durán & Jiménez (2014). Statistics are averaged in the domain of interest. (d)
the Corrsin shear parameter Corrsin (1958), Sc ≡ (∂U/∂y)q2/ε , where q2 ≡ u2 + v2 +w2, as a function of y/δ1(x). The
shear parameter is Sc ≈ 7–9 both in homogeneous shear turbulence Sekimoto et al. (2016) and in the logarithmic layer of
wall-bounded flows Jiménez (2013) (the solid line with lower triangles represents the logarithmic layer).
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Figure 2. Joint probability density function between Q∗ =Q/(
√

Reδ1
Ue/δ1)

2 and R∗ = R/(
√

Reδ1
Ue/δ1)

3 for zero-pressure-
gradient turbulent boundary layer flow with Reδ1 ≈ 5000 in (left) buffer layer, y/δ1 ≈ 0.1 (centre) logarithmic layer, y/δ1 ≈ 0.3
(right) outer region y/δ1 ≈ 1.0. The iso-probability contours are 60%, 80%, and 95% of the data. The data is averaged in the
domain of interest.

Q
∗

-2 0 2

10
-5

-1

0

1

10
-3

R∗

-2 0 2

10
-5

-1

0

1

10
-3

R∗

-2 0 2

10
-5

-1

0

1

10
-3

R∗

Figure 3. Joint probability density function between Q∗ and R∗ for self-similar adverse-pressure-gradient turbulent boundary
layer (β = 39) with Reδ1 ≈ 25000 in (left) y/δ1 ≈ 0.1 (centre) y/δ1 ≈ 0.3 (right) outer region, y/δ1 ≈ 1.0. The data is the
streamwise average in the domain of interest, assuming the self-similarity.
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Figure 4. The region of intense Reynolds stress (left, red) and the second invariant of the velocity gradient tensor (right, green)
in the self-similar APG-TBL (β = 39). Only a quarter of the domain of interest [LDoI ,0.27Ly,Lz] = [6.4,3.43,8.8]δ1(xDoI) is
shown, where LDoI, Ly, Lz represents the streamwise, wall-normal and spanwise dimension of DoI. The threshold for the
isosurfaces is −uv/U2

e = 0.016, which is 4 times larger than the outer peak of APG-TBL, and Q∗ = 10−3 (see figure 3). Note
that the free-stream velocity Ue and outer length scale δ1 is a function of the streamwise position x, and δ1 grows 34% within
the DoI. The flow is from left to top-right. The colourmap of isosurfaces is the distance from the wall, and the white colour
represents 3δ1(x).
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Figure 5. (a,c) The volume fraction of ejections (Q2) and sweeps (Q4), conditioned by τ∗xy < −Cτ u∗v∗. The lines are hτ =

[0.25 : 0.25 : 4.0], and the thick line represents Cτ = 1.75. The arrow indicates the increase of Cτ . (b,d) the Reynolds stress
conditioned on the uv-structures; (red solid) Q2; (blue dashed) Q4. The lines are the same with (a). (a, b) β = 1, (c,d) β = 39.
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