
10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017

Extrapolating statistics of turbulent flows to higher Re using quasi-steady
theory of scale interaction in near-wall turbulence

Sergei I. Chernyshenko

Department of Aeronautics
Imperial College London
London SW7 2AZ, UK

s.chernyshenko@imperial.ac.uk

Chi Zhang

Department of Aeronautics
Imperial College London
London SW7 2AZ, UK

c.zhang13@imperial.ac.uk

Hamza Butt

Department of Aeronautics
Imperial College London
London SW7 2AZ, UK

hamza.butt15@imperial.ac.uk

Mohammad Beit-Sadi,

Department of Aeronautics
Imperial College London
London SW7 2AZ, UK

mohammad.beit-sadi13@imperial.ac.uk

ABSTRACT
A new technique for extrapolating statistical characteristics of

near-wall turbulence from medium to higher Re is outlined. Re-
sults for extrapolating the velocity two-point correlation from Reτ =
2003 to Reτ = 4179 and for the parameters of an optimized comb
probe for detecting the large-scale velocity component required for
applying the technique in practice are presented.

MOTIVATION
Direct numerical simulations (DNS) and wind-tunnel experi-

ments are typically done at the values of the Reynolds number Re
below those characteristic for the practical applications. For the
regions closest to the wall such results are usually extrapolated to
higher Re on the basis of the classical universality hypothesis, ac-
cording to which near the wall the turbulent flow parameters, ex-
pressed in the wall units, are independent of Re. However, the large-
scale structures are not Re-independent, they grow as Re increases,
and they affect the near-wall part of the flow (see the reviews by
Marusic et al. (2010), Smits et al. (2011), and Jiménez (2012)).
Hence, the classical universality hypothesis does not hold and there
is a need for an alternative way of extrapolating turbulence statistics
to higher Re.

BACKGROUND: QSQH THEORY
In the studies of scale interactions in near-wall turbulence, such

as the pioneering study of Hutchins & Marusic (2007), the signals
from the velocity probes are large-scale filtered, and the velocity
is represented as a sum of large-scale and small-scale components,
the relation between which is analyzed. The recent (Chernyshenko
et al., 2012; Zhang & Chernyshenko, 2016) quasi-steady quasi-
homogeneous (QSQH) theory of scale interactions in near-wall tur-
bulence is an alternative to the classic universality hypothesis. In
essence, it amounts to defining the proper near-wall scaling of flow
parameters similar to how it is done in the introduction of the well-
known wall units, but with the friction velocity based on the large-
scale-filtered friction instead of the friction velocity based on the
time-averaged skin friction, and, accordingly, modifying the classi-
cal universality hypothesis by replacing the mean friction with the
large-scale friction. The exact physical meaning of such a theory
depends on the definition of large scale motions, which is a chal-
lenge. Zhang & Chernyshenko (2016) overcome it by postulating
the specific properties of the large-scale filter. It is a then up to the
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Figure 1. The superposition coefficient α introduced by Mathis
et al. (2011), for y+o = 100. The curve is the QSQH prediction (1),
the symbols are DNS data by Agostini et al. (2014)) at Reτ = 1000.

user to define a filter with properties as close as possible to these
postulated properties. The benefit of such an approach is the possi-
bility of doing rigorous mathematical derivations within the theory.
This resulted in a number of nontrivial results, such as the explana-
tion of the dependence of the mean-velocity log-law constants on Re
consistent with the existence of the log-law itself, or relationships
between parameters previously considered unrelated.

To verify the QSQH hypothesis, Zhang & Chernyshenko
(2016) defined the large-scale filter as a Fourier cut-off filter, with
cut-offs in time and two wall-parallel directions. The cut-off thresh-
olds were selected using a multi-objective optimization, maximiz-
ing the two-point correlation between large scales and minimizing
the two-point correlation between small scales directly at the wall
and at a certain distance y0 from the wall. The QSQH theory pre-
dicts that the well-known superposition coefficient α(y) introduced
by Mathis et al. (2011) and the mean velocity profile U(y) are re-
lated:

α :=

〈
u′L(y)u

′
L(yo)

〉〈
u′L

2(yo)
〉 ≈ U(y)+ ydU(y)/dy

U(yo)+ yodU(yo)/dyo
, (1)

where u′L is the large-scale-filtered velocity fluctuation, y and yo are
the wall-normal coordinates, and 〈·〉 denotes averaging.
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Figure 2. Actual (left) and extrapolated (right) distribution of 〈u′(y1)u′(y2)〉|Reτ=4179− 〈u′(y1)u′(y2)〉|Reτ=2003 .

The agreement in figure 1 is particularly good. Within 100
wall units from the wall and at Reτ = 1000 the typical error of other
QSQH predictions was found to be about 10%.
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Figure 3. Curves are the QSQH prediction (2). Symbols are: #
Reτ1 = 1000, Reτ2 = 2003; � Reτ1 = 2003, Reτ2 = 5186. DNS
data by Lee & Moser (2015)), y+o = 100.

Equation (1) refers quantities at the same value of Re. As a first
test of the possibility of applying the theory to extrapolation from
one value of Re to another, Zhang & Chernyshenko (2016) com-
pared the QSQH theory prediction relating the root-mean-square
velocity urms(y) at two values of Re to the mean velocity distribu-
tion:

D = y
d
dy

ln
(

u2
rms

∣∣∣
Re2
− u2

rms

∣∣∣
Re1

)
≈ y

d
dy

ln
(

U(y)+ y
dU
dy

)2
(2)

The comparison is shown in figure 3.

EXTRAPOLATION TECHNIQUE
To explain the extrapolation technique being proposed, more

detail of the QSQH theory have to be explained. The QSQH the-
ory introduces the large-scale-filtered skin friction τL and the cor-
responding friction velocity uτL(t,x,z) =

√
τL(t,x,z)/ρ, where the

variables have the commonly adopted meaning. A universal veloc-
ity function is then introduced such that

ũ
(

tuτL
2

ν
,

xuτL

ν
,

yuτL

ν
,

zuτL

ν

)
=

u(t,x,y,z,Re)
uτL(t,x,z,Re)

, (3)

where all the quantities are total (not fluctuations), u is the flow
velocity, and ν is the kinematic viscosity. The QSQH theory postu-
lates that near the wall at sufficiently high Re the statistical charac-
teristics of ũ(t̃, x̃, ỹ, z̃) for constant t̃, x̃, ỹ, and z̃ are independent of
Re.

We propose the following 4-step procedure of extrapolating the
turbulence statistics to Re so high that neither DNS nor near-wall
experiments are feasible at the current state of the art.

Step 1. An experiment or DNS is performed at a moderate Re =
Rem to obtain u(t,x,y,z,Rem) and uτL(t,x,z,Rem).

Step 2. The statistical properties of ũ(t̃, x̃, ỹ, z̃) are determined from
(3).

Step 3. Measurements of uτL(t,x,z,Re) are made at the high
Re. This is easier than measuring u(t,x,y,z,Re) because
uτL(t,x,z,Re) can be determined from measurements fur-
ther away from the wall using the QSQH theory and be-
cause, being large-scale, it requires less spatial and tempo-
ral resolution.

Step 4. The statistical properties of u(t,x,y,z,Re) at the higher Re
are obtained from (3).

To test this approach, we used the data for channel flow (Sillero
& Jiménez, 2016) at Reτ = 2003 to predict the two-point veloc-
ity auto correlation function 〈u′(y1)u′(y2)〉 at Reτ = 4179. The
comparison of the difference between the actual autocorrelation at
Reτ = 4179 and Reτ = 2003 with the difference between the QSQH
prediction for the autocorrelation at Reτ = 4179 and the actual au-
tocorrelation at Reτ = 2003, shown in figure 2, is satisfactory.

IMPLEMENTATION
The existing DNS databases provide an implementation of

Step 1, and experimental data can be used for this purpose as
well. Step 2 is more complicated. A full statistical description of
ũ(t̃, x̃, ỹ, z̃) can be represented as a probability density distribution
in a suitably-discretized functional space. This, however, is ineffi-
cient, because the dimension of the turbulent attractor is known to
be far less than the dimension of the entire space, even if the latter
is made finite by a suitable truncation, which is always the case in
direct numerical simulations. The same problem is encountered in
representing the statistical properties of the turbulent velocity field.
This is overcome by storing a sufficiently long sample instance of
a turbulent flow. In principle, the same solution can be used for
ũ(t̃, x̃, ỹ, z̃). The standard DNS database containing the values of the
velocity at a discrete set in time and space can be converted into
a database containing the values of ũ at a discrete set of (t̃, x̃, ỹ, z̃)
using (3). However, while the grid in the (t,x,y,z) space is usually
regular, for example Cartesian, the corresponding grid in (t̃, x̃, ỹ, z̃)
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Figure 4. Actual (left) and obtained with the probe (right) large scales

space is not. Moreover, for large values oof t̃, x̃, or z̃ this grid self-
overlaps. Zhang & Chernyshenko (2016) pointed out that in fact
(3) is not applicable for large t̃, x̃, or z̃, and a more elaborate ver-
sion of (3) should be used instead. This, however, makes creating
the ũ(t̃, x̃, ỹ, z̃) cumbersome. Instead, the database for Re = Rem
together with the corresponding uτL(t,x,z,Rem) can be used for re-
calculating ũ from (3) every time it is needed.

The difficulty of implementing Step 3 depends on the defini-
tion of the large-scale filter. For example, implementing the Fourier
cut-off filter used in (Zhang & Chernyshenko, 2016) requires at the
least the knowledge of the time series of noticeably greater length
than the time cut-off, and in a domain of the longitudinal and span-
wise dimensions also much greater than the corresponding cut off
lengths. Such knowledge can be obtained by DNS. For example, for
making the extrapolation of the two-point auto-correlation shown in
figure 2 we obtained uτL(t,x,z,Reτ ) at Reτ = 4179 from the DNS
database for Reτ = 4179. In a practical application this would not
be possible, since, having that much data at the target value of Reτ ,
one would not need to extrapolate.

To resolve this difficulty, we propose to use in experiments sev-
eral probes arranged in a rake pattern in the spanwise direction. The
probes can be located at a certain distance yo of about 100 wall units
from the wall since, according to the QSQH results already verified
(Zhang & Chernyshenko, 2016), the large-scale motion is well cor-
related in wall normal direction up to this distance, and the further
away from the wall the probes are located the easier it is to make
the measurements. The probes will measure the velocity, and the
large-scale friction will then be obtained with the help of the QSQH
theory. The approximation uL p(t,x,yo,z) for the actual uL(t,x,yo,z)
can then be obtained as

uL p(t,x,yo,z) =
n

∑
k=1

wku(t,x,yo,z+∆zk), (4)

where ∆zk is the spanwise displacement of the k-th probe within
the rake, and n is the number of the probes. The weights wk and
the displacements ∆zk between the probes should be optimized to
minimize the difference between uL p and the actual uL.

THE 9-PROBE RAKE FOR Reτ = 4179 DATABASE
We will now describe the preliminary calculation of the op-

timal probe for the case when the database used as the basis for
extrapolation is the plane channel flow database for Reτ = 4179

(Sillero & Jiménez, 2016), and the large-scale motions are defined
by a spatial Fourier cut-off filter with the cut-off lengths L+

x =
3282 and L+

z = 386.1, which are the values accepted in (Zhang
& Chernyshenko, 2016). Note that in (Zhang & Chernyshenko,
2016) the filter also used a cut-off in time, and it was optimized for
Reτ = 1000. Abandoning the time cut-off is justified by the approxi-
mate validity of the Taylor hypothesis in this context. In experiment
using a cut-off in x will not be possible, and, hence, using the cut-
off in x as a proxy for cut-off in time is the best option in optimizing
the probe. However, ideally, the cut-off values should be selected to
correspond to Reτ of the database to be used for optimization. This
is yet to be done in the future work.

We have selected one time frame from the database, and con-
centrated on a particular grid layer at the distance y+o = 99, obtain-
ing a slice of the velocity in the form u = u(xi,z j), where xi and
z j are the grid line coordinates. We then applied to this slice the
Fourier cut-off filter described above and obtained the correspond-
ing large-scale component uL(xi,z j). The number of probes n was
assumed to be equal to 9, equal to the number of available signal
processing channels in a specific possible future experimental im-
plementation. Selecting a particular set of probe displacements ∆zk,
the optimal weights can be found by minimizing the L2 norm of the
difference between uL and uL p, which is equivalent to the following
easily solvable quadratic optimization problem

min
∆zk

∑
i, j

(
uL(xi,z j)−uL p(xi,z j)

)2

with uL p defined by (4). We then used two approaches for opti-
mizing ∆zk. In one approach the probes were assumed to be evenly
spaced, ∆zk = (k− 5)∆z. Optimization with respect to a single pa-
rameter ∆z is then fast and straightforward. In the second approach
the set of ∆zk values was optimized using the genetic optimiza-
tion algorithm included in MATLAB. In all cases we assumed the
probe spacing to be symmetric with respect to the center probe.
On obtaining the weights we inspected their symmetry as a way
of verification, since if the probes are symmetric the weights should
also be symmetric. The large-scale field obtained with the optimal
genetically-optimized probe is compared with the actual large-scale
field in figure 4. We defined the relative error as ||u′L−u′L p||/||u

′
L||,

where prime denotes the fluctuation. For the same slice that the
probe was optimized, the genetically optimized rake gave the error
of 0.0715 and the evenly spaced probe gave the error of 0.0826. For
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Figure 5. Weights: # uniform Reτ = 4178, � uniform Reτ =

2003, N genetically optimized Reτ = 4178. The horizontal bar
shows the cut-off length.

a different time step, the same weights gave the errors 0.0779 and
0.0905 respectively.

The probe positions and weight of the genetically optimized
rake are are shown in Table 1. For a uniformly-spaced probes the
probe spacing was found to be ∆z+ = 64.13, while the weights were
0.3306,0.2783,0.1369,0.0050,−0.0932, starting from the center
probe. Due to symmetry, the values for only one side of the rake
are provided here and in the table.

Table 1. Optimal probe displacement and weights.

∆z+k wk

0 0.2564

51.3 0.2482

111.6 0.1979

260.8 -0.0999

478.8 0.0322

Figure 5 shows these weights and probe positions together with
the weights and positions of the optimal uniformly-spaced weights
probe for the database for Reτ = 2003. It can be observed that the
Reynolds number has little effect on the optimal probe, and that
the main effect of the genetic optimization amounts to moving the
probe that has almost zero weight in the uniformly-spaced probe to
a new position.

Finally, figure 6 shows the gain of the probe filter as compared
with the gain of the cut-off filter, and a suitably-scaled premultiplied
velocity spectrum. It can be seen that the optimization procedure
trades off the agreement of the gains at the wavenumbers with low

energy for the better agreement of the gain at the higher energy, as
it can indeed be expected.

It can be concluded that a systematic procedure of extrapola-
tion of turbulent statistics of near wall flow, taking into account the
effect of large-scale structures, has been developed. It remains yet
to be implemented in practice.
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Figure 6. Filter gains G and premultiplied spectrum E versus the
wavenumber n. Straight lines show the gain of the Fourier cut-off
filter, the curve is the gain of the genetically-optimized 9-probe fil-
ter, and symbols are a sample of a premultiplied velocity spectrum.
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Jiménez, J. 2012 Cascades in wall-bounded turbulence. Ann. Rev.
Fluid Mech. 44 (1), 27–45.

Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbu-
lent channel flow up to Reτ =5200. J. Fluid Mech. 774, 395–415.

Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits,
A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at
high Reynolds numbers: Recent advances and key issues. Phys.
Fluids 22 (6).

Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner–
outer model for streamwise turbulence statistics in wall-bounded
flows. J. Fluid Mech. 681, 537–566.
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