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ABSTRACT
Direct numerical simulations and global linear stability analy-

sis have been performed to investigate the effect of sweep on the be-
haviour of transitional separation bubbles developing over a NACA-
0012 airfoil at moderate Reynolds numbers. The results indicate
that the laminar-turbulent transition inside the bubble is greatly af-
fected by the sweep angle, with the onset of two-dimensional vortex
shedding being favoured over three-dimensional vortex shedding
as sweep is increased. Both the DNS and global stability results
show that the laminar-turbulent transition of the separation bubble
is dominated by instability modes developing in the detached shear
layer induced by the bubble and sustained by an acoustic feedback
loop. An additional set of modes with relatively low frequencies
and concentrated inside the separation bubble were also uncovered
by a Dynamic Mode Decomposition of the DNS data. These modes
are globally unstable and lead to three-dimensional oscillation of
the separations bubble.

Introduction
Transitional separation bubbles (TSB) occur when the laminar

flow over a solid surface separates under the influence of a suffi-
ciently high adverse pressure gradient, generating a region of re-
versed flow and a highly unstable detached shear layer. The shear
layer develops instabilities that drive the flow to a chaotic state and
eventually cause the flow to reattach as a turbulent boundary layer.
TSBs are typical of moderate Reynolds number flows over airfoils,
where they exert a strong influence on aerodynamic performance.
The pocket of “dead air” that forms inside the bubble limits the
lift attainable, while the failure of the reattachment process leads to
bubble bursts and airfoil stall.

The structure and dynamics of TSBs are greatly influenced
by the underlying laminar-turbulent transition process that shapes
them. A number of experiments (Dovgal et al., 1994) and numer-
ical simulations (Marxen et al., 2012) have highlighted the impor-
tance of the Kelvin-Helmholtz (K-H) instability of the separated
shear layer as a dominant process in TSBs. The general conclusion
that arises from these investigations places emphasis on the ability
of separation bubbles to strongly amplify incoming disturbances.
However, self-sustained flow unsteadiness and laminar-turbulent
transition in separation bubbles have been observed in various nu-
merical investigations (see for example Pauley et al., 1990; Postl
et al., 2011), indicating that the picture that portrays TSBs as dis-
turbance amplifiers does not always suffice. The resonator character
of TSBs has been investigated in the context of absolute and global
stability analyses by a number of authors. Investigations of absolute
instability in separation bubbles (Alam & Sandham, 2000; Rist &
Maucher, 2002) suggest that a reversed flow of at least 15−30% is
needed before an absolutely unstable mode associated with the K-H
instability of the separated shear layer appears. Such a mode would
lead to self-sustained two-dimensional (2D) vortex shedding over
which an additional self-excited three-dimensional (3D) instability
may evolve (Jones et al., 2008; Embacher & Fasel, 2014), driving

the flow to a turbulent state. This additional mode may be viewed
as an unstable global Floquet mode of the periodic flow induced by
the saturated K-H instability.

Most of the research on TSBs in the past few decades has
been directed towards the unswept configuration, while the effects
of sweep on the TSB behaviour have received only little attention.
Kaltenbach & Janke (2000) performed direct numerical simula-
tions of transitional swept separation bubbles behind a rearward-
facing step and showed that an independence principle, accord-
ing to which the introduction of infinite sweep does not affect the
flow characteristics in the chordwise direction, holds throughout
the entire separated flow region for sweep angles up to 40◦. In-
stability growth rates (extracted directly from the DNS data) in the
detached shear layer induced by the bubble where found to grow
slightly with sweep angle. The independence principle was shown
to hold exactly in the case of strictly laminar swept separation bub-
bles by Hetsch & Rist (2009a), provided the free-stream velocity in
the chordwise direction remains independent of sweep angle. In a
follow-up study Hetsch & Rist (2009b) also investigated the linear
stability of laminar swept separation bubbles induced over a flat
plate by an adverse pressure gradient. Using local linear stabil-
ity analysis (LST) and solutions of the parabolised stability equa-
tion (PSE) they showed that the linear instabilities of swept separa-
tion bubbles are not independent of sweep angle. In particular, the
primary instability of the separation bubble was found to shift to-
wards higher frequencies and spanwise wavenumbers with increas-
ing sweep angle, while the dominant Tollmien-Schlicting wave in
the attached boundary layer was only slightly affected by sweep.
Despite cross-flow levels of up to 9% of the free-stream velocity,
Hetsch & Rist (2009b) found that cross-flow instabilities played
only a marginal role in the laminar-turbulent transition process, and
only for the highest sweep angle of Λ = 45◦ analysed in their study.

The objective of the present work is to understand how sweep
affects the laminar-turbulent transition process taking place on the
suction side of a NACA-0012 airfoil at moderate Reynolds num-
bers. The investigation is carried out by performing direct numeri-
cal simulations (DNS) of the transitional flow around the airfoil at
different sweep angles, complemented with global linear stability
analysis.

Numerical simulations
The DNS have been carried out using the SBLI code; a highly

accurate, multi-block, finite-difference solver developed at the Uni-
versity of Southampton. The code solves both the nonlinear and the
linearised compressible Navier-Stokes equations in dimensionless
form, using standard fourth-order central differences and a third-
order compact Runge-Kutta method. Further details about the nu-
merical method and validation cases can be found in De Tullio
(2013) and references therein. As well as the DNS, a linearised ver-
sion of the SBLI code is used in this work to solve the global eigen-
value problem around the time averaged flow fields in matrix-free,
timestepper mode, with the help of the Implicitly Restarted Arnoldi
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Figure 1. Sketch of the computational domain used for the direct
numerical simulations.

Method provided by the parallel ARPACK library (Lehoucq et al.,
1997).

The numerical simulations have been performed for the flow
over an infinitely swept wing with a NACA-0012 profile, modified
to include a sharp trailing edge, at an incidence α = 5◦, Reynolds
number based on the airfoil chord Rec = 5× 104 and Mach num-
ber M = 0.4. The investigation is carried out for two sweep angles
Λ = 20◦ and 40◦, and an un-swept wing case (Λ = 0◦) is also con-
sidered for comparisons. The free stream speed Q∞ is kept constant
for all the numerical simulations, regardless of the sweep angle.
Hence, the velocity components in the directions perpendicular and
parallel to the leading edge of the wing vary with the sweep angle
according to U∞ = Q∞ cosΛ and W∞ = Q∞ sinΛ, respectively. A
sketch of the computational domain used for the numerical simula-
tions is shown in figure 1. The domain is divided into three blocks,
with interface boundary conditions between neighbouring blocks,
and its dimensions are R = 7.3, W = 5 and S = 0.4 for all the simu-
lations.

The airfoil is numerically modelled using a no-slip, isother-
mal boundary condition, with the wall temperature equal to the
freestream temperature T∞ = 273.15K. Characteristic boundary
conditions are applied at all the remaining computational bound-
aries in order to minimise wave reflections. In particular, a zonal
characteristic boundary condition Sandberg & Sandham (2006) is
applied over a distance Lzonal ≈ 0.85c near the outflow boundary
of blocks 1 and 3, using 61 grid points. A standard characteris-
tic condition Thompson (1987, 1990) is applied at the rest of the
boundaries, where, in addition, the freestream solution is imposed
at each time step. The computational domain and grid used in this
work were chosen based on those used in the work of Jones et al.
(2008). Here, the spanwise size of the domain (S = 0.4c) has been
doubled and the grid has also been refined in the streamwise and
spanwise directions, giving a total of 567 million grid points.

A summary of the features of the computational grid employed
in this study are reported in table 1. The same grid is used for all
the numerical simulations. Based on the values of ∆y+min, ∆x+max
and ∆z+max, which were calculated at the position of the skin friction
peak induced by the laminar-turbulent transition on the suction side
of the wing, the same grid is deemed appropriate also for the swept-
wing cases.

Direct numerical simulation results
A visualisation of the flow structures in the transitional flow

over the suction side of the airfoil is shown in figure 2 through

isosurfaces of the second invariant of the velocity gradient tensor
(Q-criterion), for the three cases considered. Note that in all cases
the free stream flow is from left to right. The dominant flow struc-
tures in the transitional separation bubble indicate that a K-H in-
stability of the detached shear layer drives the initial stages of the
laminar-turbulent transition process and leads to a distinct vortex
shedding towards the end of the bubble. This observation agrees
with previous findings reported in the literature for the unswept con-
figuration (Jones et al., 2008). Here, we further note that, while
for the unswept and the Λ = 20◦ cases the dominant structures are
three-dimensional (3D), in the Λ = 40◦ case vortex shedding has
a stronger spanwise coherence. The initial shear layer roll up is
followed by a rapid breakdown to turbulence that reattaches the
flow forming a turbulent boundary layer downstream of the bub-
ble. Note that no external disturbances have been imposed in the
numerical simulations carried out in this work, so that the laminar-
turbulent transition is self-sustained and cannot be attributed solely
to the development of convective instabilities. The behaviour of the
separation bubble clearly indicates that there are two distinct mech-
anisms driving the flow to a turbulent state. The first mechanism is
responsible for the instability of the detached shear layer induced
by the bubble and leads to a periodic vortex shedding, while the
second mechanism is responsible for the rapid breakdown to turbu-
lence that follows. In this contribution attention will be focused on
the first of these two mechanisms.

A more quantitative account of the periodic vortex shedding
is provided in figure 3, which shows Fourier spectra of the wall
pressure perturbations at the mid-chord location, together with con-
tours of the real part of the Fourier coefficients over the wing’s suc-
tion side for the most amplified modes. In the unswept case the
dominant mode of instability in the separation bubble has a struc-
ture typical of oblique-mode breakdown and is composed of two
waves with Strouhal number St ≈ 5.6 and equal and opposite span-
wise wavenumbers kz = ±15.71. This mode was not observed in
Jones et al. (2008), who studied the same unswept wing configura-
tion analysed here and found a dominant 2D vortex shedding for a
Strouhal number (calculated using the free stream velocity and the
airfoil chord) of St = 3.37, owing to the smaller spanwise computa-
tional domain size used in their work. For Λ = 20◦ vortex shedding
is dominated by an oblique mode with kz =+15.71 and St ≈ 6.53.
In this case, additional sub-dominant modes include a 3D mode
with kz =−15.71 and St ≈ 4.84 and a 2D (i.e. parallel to the leading
edge) mode with St ≈ 3.0. For a sweep of Λ = 40◦ vortex shedding
is excited by a broad range of 2D instability modes growing in the
bubble, the most dominant of which has a frequency of St ≈ 3.0.
A peak at St ≈ 7.56 (see blue line in figure 3) is associated with a
3D mode with kz = +15.71 (note that z refers to a reference frame
attached to the wing, with x being the chordwise direction).

The dominant structures in the transitional separation bub-
ble were also investigated using Dynamic Mode Decomposition
(DMD) (Schmid, 2010). In particular, here we use the streaming
DMD algorithm proposed by Hemati et al. (2014), which allows
DMD analysis to be performed in streaming mode, thereby dras-
tically reducing the memory requirements for the computation of
DMD modes. In all the three cases analysed, the DMD analysis
is carried out using a x− y plane placed at z = 0.2, combined with
a x− z plane placed at a distance of about 6× 10−3 chords from
the airfoil surface. The analysis is carried out over a time period of
τ = 50 chord-flow-through times, using snapshots of the full con-
servative variables vector q = [ρ,ρu,ρv,ρw,ρE]T separated by a
constant time step ∆t = 0.05. Figures 4(a), (b) and (c) show the
DMD energy spectra, together with contours of the real part of the
u-velocity mode functions for two of the most energetic modes for
cases S0, S20 and S40, respectively. Note that mode energies were
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Case R/c W/c S/c N f oil Nwake Nξ Nη Nz ∆y+min ∆x+max ∆z+max

S0 7.3 5.0 0.4 1799 1602 3401 692 240 0.92 3.46 4.92

Jones et al. (2008) 7.3 5.0 0.2 1066 1506 2570 692 96 1.0 3.36 6.49

S20 7.3 5.0 0.4 1799 1602 3401 692 240 0.92 3.45 4.92

S40 7.3 5.0 0.4 1799 1602 3401 692 240 0.92 3.43 4.97

Table 1. Details of the computational study.

Figure 2. Flow structures in the transitional separation bubble, shown through isosurfaces of Q-criterion coloured by streamwise velocity
contours (top view). The white isosurfaces show regions of reversed flow. The flow is from left to right. a) case S0, b) case S20 and c) case
S40.

Figure 3. Wall pressure Fourier analysis. Span-averaged Fourier coefficient amplitudes at mid chord and contours of the real part of the wall
pressure Fourier coefficients showing the structure of the dominant modes during breakdown to turbulence. a) Unswept, b) 20 degrees sweep
and c) 40 degrees sweep

scaled with the energy of the mean flow mode (the most energetic
mode), seen in the spectra of figure 4 at St = 0 and unit energy.
While some of the DMD modes extracted correspond to dynamical
features of the turbulent boundary layer, the analysis here is focused
on the modes that relate to the separation bubble transition process.
For case S0 in figure 4(a) one of the dominant DMD modes occurs
for a Strouhal number of St = 5.56. This mode is the dominant
instability identified by the Fourier analysis and, as suggested by
the associated eigenfunction, is the manifestation of an oblique K-

H instability of the detached shear layer placed above the bubble.
Two-dimensional linear instabilities also play an important role in
the laminar-turbulent transition of the separation bubble in this case.
The dominant 2D DMD mode in this case is shown in 4(a); it is also
of K-H type and has a frequency St = 4.0. Case S20, shown in figure
4(b), has a distinct peak in the DMD energy spectrum at St = 6.66,
which again corresponds with the dominant instability mode identi-
fied in the Fourier analysis. The DMD eigenfunction indicates that
this mode is an oblique K-H instability of the detached shear layer
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Figure 4. Dynamic mode decomposition spectra and contours of the real part of the u-velocity for some of the most energetic DMD modes.
a) case S), b) case S20 and c) case S40.

above the bubble, travelling in the positive spanwise direction. Two-
dimensional modes also take part in the laminar-turbulent transition
process in this case, the most amplified of which is shown in figure
4(b) and has a frequency of St = 2.74. The dominant K-H modes
are all 2D for case S40. Figure 4(c) shows that the S40 DMD spec-
trum has a peak at around St = 3.0 and the most dominant modes
extracted from the DNS results have St = 2.7 (left) and St = 3.7
(right) and are both manifestations of a 2D K-H instability of the
detached shear layer.

It is interesting to note that, while for the unswept case the
wave vectors of the 3D modes developing in the bubble do not have
a preferred orientation in the spanwise direction, the dominant 3D
modes found in the swept cases always have a preferred orienta-
tion, which is dependent on the frequency of the mode. There may
be different factors causing this behaviour. Instabilities will exhibit
different spatial growth rates when travelling in the positive or neg-
ative spanwise direction when a nonzero mean spanwise velocity is
present in the flow. Another important factor has to do with the re-
ceptivity of the convectively unstable modes. In a reference frame

xyz with nonzero uz velocity, the dispersion relation for an acoustic
wave is not symmetric about kz = 0, hence, for a fixed frequency, the
chordwise wavenumber (kx) for an acoustic wave travelling back-
wards against the flow is different for positive and negative kz. This
can be shown by writing the dispersion relation for a neutral, plane
acoustic wave in the free-stream in the xyz reference frame (i.e. the
reference frame used in the numerical simulations), which takes the
form

St =
|k|
2π

[
cos(Λ−θ)+M−1

]
, (1)

where |k| =
√

k2
x + k2

z , θ = arctan(kz/kx) is the propagation angle
in the x−z plane and the sweep angle Λ is also the angle between the
x direction and the free-stream flow direction. Figure 5 shows the
variation of St against kx for kz = 0 and kz = ±15.71, which is the
minimum nonzero spanwise wavenumber contained in the compu-
tational domain. While for the unswept case the dispersion relation
is symmetric about kz, as already anticipated the dispersion rela-
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Figure 5. Dispersion relations for oblique acoustic waves. a) case S0, b) case S20 and c) case S40.

Figure 6. Global 2D spectra. The eigenfunctions of the most unstable modes are shown in the insets through contours of the real part of the
velocity divergence field. a) case S0, b) case S20 and c) case S40.

tions for kz > 0 and kz < 0 differ in the case of nonzero sweep. For
example at St = 7.56 in the Λ = 40◦ case, the chordwise wavenum-
bers for kz = +15.71 are kx = −4.49 and kx = −5.63, while for
kz =−15.71 we have kx =−27.15 and kx = 11.55. Such a large dif-
ference in the wavenumbers of the acoustic waves travelling back-
wards against the flow, in turn, affects the receptivity of boundary
layer instabilities due to the interaction between the acoustic waves
and the airfoil’s leading edge.

In order to further investigate the origin of the self-sustained
vortex shedding, a global linear stability analysis of the time- and
span-averaged flow fields was performed. Figure 6 shows the 2D
(kz = 0) global spectra for the different degrees of sweep, together
with the eigenfunctions of the most unstable modes in each case.
The mean flows obtained for the different sweep angles are able to
sustain the growth of 2D globally unstable modes. The spectrum
appears to be formed by two different branches for case S0. The
first branch is centred at about St = 4.0 and the second at about
St = 6.0. While the peak growth rate for the first branch agrees well
with the frequency of the most amplified 2D DMD mode for case
S0, the second branch was not found in the DMD or Fourier anal-
yses. One possible explanation for this discrepancy may be that
the frequency range of the second 2D branch overlaps with that
of the dominant (3D) instability for this case. For case S20, the

most unstable 2D global modes occur for frequencies in the range
St = 3.0− 4.0. The agreement between global linear stability and
DMD and Fourier analyses is reasonable in this case, with the dom-
inant 2D DMD and Fourier modes found for frequencies St = 2.74
and St = 3.0, respectively. For case S40 a single branch of highly
unstable modes can be observed, centred at St = 3.0. This is in
very good agreement with the DNS data; the dominant DMD and
Fourier modes were found for frequencies between St = 2.7 and
St = 3.7, and for St = 3.0, respectively. As shown by the eigen-
functions in figure 6, all the unstable modes are characterised by a
strong acoustic feedback (originating at the airfoil’s trailing edge)
that feeds the convective instability of the detached shear layer and
drives the global instability of the flow. The growth rate of the most
unstable 2D global modes increases with increasing sweep angle,
with the most unstable mode for Λ = 40◦ growing almost twice as
fast as its Λ = 20◦ counterpart.

In addition to the self-sustained K-H modes that lead to the
characteristic vortex shedding shown in figure 2, a different kind of
mode, characterised by a relatively low oscillation frequency and
principal support inside the separation bubble, was also uncovered
by the DMD analysis. Figure 7(a) and (b) show the eigenfunctions
of the leading low frequency modes for cases S20 and S40, respec-
tively. They have a frequency of St = 0.18 for case S20 and St = 0.5
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Figure 7. Low frequency bubble DMD modes, shown through contours of the real part of the u-velocity eigenfunction. a) case S20, St = 0.18
and b) case S40, St = 0.5.

for case S40 and can be identified in the DMD spectra in figures
4(b) and (c), respectively, as the most energetic modes near St = 0.
These modes are associated with three-dimensional global oscilla-
tions of the separation bubble and appear to play a primary role in
the laminar-turbulent transition process inside the bubble. This is
especially true for the cases with sweep, although a low frequency
mode also exists in the unswept case, as can be seen in the DMD
spectrum in 4(a) near St = 0. In particular, for case S40 the St = 0.5
mode is responsible for the slight spanwise modulation of the 2D
vortex visible in figure 2(c) near the back of the bubble.

Conclusions
Direct numerical simulations and global stability analysis were

carried out to investigate the effect of sweep on the dynamics of
the transitional separation bubbles forming on the suction side of
a NACA-0012 airfoil. The results show that the laminar-turbulent
transition of the separation bubbles leads to the shedding of vortices
at the back of the bubble, which is caused by the spatial growth of
a K-H instability of the detached shear layer induced by the bub-
ble. The convective instability of the shear layer is sustained by
an acoustic feedback loop originating at the airfoil’s trailing edge.
Sweep affects this self sustained transition process mainly by mod-
ifying the dispersion relation of the acoustic waves responsible for
the excitation of the instability modes, leading to different charac-
teristics of the dominant shear layer modes for different angles of
sweep. In all the cases analysed, the separation bubble was found
to undergo three-dimensional oscillations due to the existence of a
globally unstable mode, with frequencies about one order of mag-
nitude lower than the dominant shear layer mode. The results from
a global two-dimensional linear stability study were found to be in
good agreement with the DNS data.
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