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ABSTRACT
The subgrid-scale (SGS) model is improved based on analysis

of SGS force and energy transfer around an elliptic Burgers vortex.
Abe (2013) proposed an anisotropy-resolving SGS model where the
Bardina term of similarity model is mixed to the eddy viscosity
model. The Bardina term gives no effect to the SGS energy transfer
but affects the SGS force. Using this concept, we newly propose
the similarity model with the Clark term. The SGS energy trans-
fer is determined by not the eddy viscosity term but the similarity
term, whereas the SGS force is improved by using the SGS kinetic
energy as well as Abe (2013). We found that the SGS force and en-
ergy transfer with the Clark term yield high correlation with the true
distributions around the elliptic vortex better than the Bardina term.
The SGS model based on the Clark term gives good performance
for turbulent channel flows in Reτ = 180 and 590 even in extremely
coarse grid resolutions. Especially, the SGS model with the SGS ki-
netic energy fairly improves the mean streamwise velocity profile.

INTRODUCTION
As the advancement of computer power, large-eddy simula-

tion (LES) has been the promising computation method of turbu-
lent flows. The eddy viscosity model like the Smagorinsky model
(Smagorinsky, 1963) gives adequate energy dissipation. However,
the correlation of the subgrid-scale (SGS) energy transfer distribu-
tion is not high compared with the true SGS energy transfer distribu-
tion obtained from the filtered direct numerical simulation (DNS).
In order to improve the correlation, the terms similar to the SGS
stress tensor are proposed by Clark et al. (1979) and Bardina (1980),
here we call them Clark term and Bardina term, respectively. Those
similarity terms give low energy dissipation, but high correlations
of the SGS energy transfer and stress tensor with the filtered DNS
results.

Recently, Abe (2013) proposed an anisotropy-resolving SGS
model where the Bardina model is used for the Reynolds term. That
feature is that (1) eddy viscosity is determined by one equation for
the SGS kinetic energy proposed by Inagaki (2011) and (2) the Bar-
dina term is mixed in the SGS stress tensor but does not affect the
SGS energy transfer. Thus, the SGS energy transfer is given only
by the eddy viscosity and the mixed Bardina term affects only the
SGS force in Navier-Stokes equations.

The Abe model shows perfect predictions of streamwise ve-
locity in turbulent channel flows in Reτ = 395 ∼ 2000 even for ex-
tremely coarse grid resolutions. However, it is unclear why Abe
model gives good performance by using the Bardina model. Real
turbulence is considerably complicated, so that it is difficult to un-
derstand how modeled terms behave in the complex turbulence.

In order to understand that, Kobayashi (2015) showed the SGS
energy transfer around an elliptic Burgers vortex which is seen a
lot in DNS. It is found that the SGS energy transfer distribution by
Bardina model shows a negative correlation with that by the filtered
DNS. As is well known, the SGS energy transfer distribution by the

eddy viscosity has low spatial correlation with that by the filtered
DNS.

In the present study, we improve the SGS model based on (a)
the results of the SGS force and SGS energy transfer around the
elliptic Burgers vortex and (b) the concept used in the Abe model,
i.e., no contribution of non-linear term to the energy transfer. The
proposed SGS models are examined for the turbulence statistics in
the turbulent channel flows of Reτ = 180 and 590.

SGS MODEL AND NUMERICAL METHODS
We use the asymptotic solution of the elliptic Burgers vortex

presented by Moffatt et al. (1994) for the background straining flow
U = (αx,βy,γz) where α +β +γ = 0, α < 0 < γ , β > α , the strain
parameter λ = (α −β )/(α +β ) = 3.63, α = −2.31, β = 1.31 as
shown in Kobayashi (2015). The axis of the vortex aligns in z direc-
tion. For the obtained velocity distribution around the elliptic vor-
tex, we take a differential filtering operation with the second-order
finite difference method.
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where the overline (-) shows filtered variables for a resolved scale,
and this filtering operation is commonly used to obtain the test
filtered velocity in dynamic SGS models as shown in Kobayashi
(2005). By using this filtering operation, we obtain the SGS energy
transfer and SGS force around the elliptic vortex. The SGS energy
transfer term in the SGS kinetic energy equation is described as

−τi jSi j, τi j = uiu j −uiu j, Si j =
1
2

(
∂u j

∂xi
+

∂ ui

∂x j

)
(2)

where τi j is the SGS stress tensor and Si j is the velocity strain ten-
sor. If −τi jSi j is positive, it means forward scatter, i.e., energy trans-
fer from large scale to small scale. The SGS force is defined as

−
∂τi j

∂ x j
(3)

in the Navier-Stokes equations.
Abe (2013) proposed the anisotropy-resolving SGS model with

the Bardina term as a scale-similarity model.
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Figure 1. Distributions of vorticity and velocity vectors for an el-
liptic Burgers vortex.

where ()∗ indicates the traceless tensor, νSGS is the SGS eddy vis-
cosity, kSGS is the SGS kinetic energy, τ ′i j is the Bardina term, and

(̂) shows a test filter with ∆̂ = 2∆. In Eq. (4), the first term yields
the eddy viscosity model, whereas the second term has no contri-
bution to the SGS energy transfer but affects the SGS force as the
similarity term.

The SGS stress tensor is newly modeled as follows.

τ∗i j =
−LabSab + |−LabSab|
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where Li j is the Clark term and is the first term of Taylor expansion
of modified Loenard term. In Eq. (6), the first term gives forward
scatter and is a similarity term. The second term is modeled based
on the concept proposed by Abe (2013), i.e., it does not contribute
to the SGS energy transfer but improves the SGS force. The kSGS in
Eq. (6) is determined by one equation model proposed by Inagaki
(2011), but that equation is simplified as below. We use only the
turbulence production and SGS energy dissipation rate. As a result,

(a)

(b)

Figure 2. Distributions of SGS energy transfer and SGS force vec-
tor for Clark term.

we use a single model parameter Cε = 0.835.

∂ kSGS

∂ t
=−τi jSi j − εSGS (8)

εSGS =Cε
2k3/2

SGS

∆
(9)

In this paper, we call the model LS-1eq. When we do not solve the
one equation for kSGS, we call the model LS, namely, kSGS = 0 in
Eq. (6).

Table 1. Numerical condition and grid resolution.

Reτ Lx ×Ly ×Lz Nx ×Ny ×Nz ∆x+ ∆z+

180 4πδ ×2δ × 4
3 πδ 16×64×16 141 47

590 2πδ ×2δ ×πδ 64×64×64 58 29

590 2πδ ×2δ ×πδ 32×64×32 116 58

The central finite difference method is used with fourth-order
accuracy in streamwise (x) and spanwise (z) directions and the
second-order accuracy in wall-normal (y) direction as described in
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Figure 3. Distributions of SGS energy transfer and SGS force vec-
tor for Bardina term.

Kobayashi (2005). The periodic boundary condition is used in x
and z directions and no slip condition is adopted in y direction.
The MAC scheme is adopted for the coupling of velocity and pres-
sure, and the Poisson equation for pressure is solved by using FFT
method. The third order Adams-Bashforth method is used for time
marching scheme of Navier-Stokes equations. The linear implicit
Euler scheme is adopted for the SGS kinetic energy equation.

Table 1 shows the numerical condition and grid resolution for
the turbulent channel flows in Reτ = 180 and 590, where Reτ is
the Reynolds number based on wall friction velocity, the channel
half width δ and molecular kinematic viscosity. The domain size
Lx × Ly × Lz and grid points Nx ×Ny ×Nz in x, y and z directions
are listed in Table 1, and ∆x+ and ∆z+ indicate the grid spaces in
the wall unit, respectively. The extremely coarse grid resolution is
adopted at Reτ = 180, whereas fine and coase resolutions are used
at Reτ = 590.

RESULTS
Figure 1 shows the distributions of vorticity and velocity vec-

tors for an elliptic Burgers vortex at Re = 200 based on circulation
and molecular kinematic viscosity. By using filtering operation of
Eq. (1) with filter width 1.25rmax where rmax is the radius with the
maximum azimuthal velocity of the Burgers vortex (Burgers, 1948),
we obtain the SGS energy transfer (red color: forward scatter) de-
scribed as Eq. (2) and the SGS force vectors of Eq. (3) around
the elliptic vortex for the Clark term in Eq. (7) as shown in Fig.
2. Those distributions with Clark term have good correlations of
0.8 with true SGS energy transfer of −τi jSi j and true SGS force of

(a)

(b)

Figure 4. Distributions of SGS energy transfer and SGS force vec-
tor for Smagorinsky model.

−∂τi j/∂x j.
In Fig. 3, shown are the SGS energy transfer and SGS force

vectors distributions for the Bardina term in Eq. (5). That SGS
energy transfer distribution is different from the true SGS energy
transfer one similar to Fig. 2, and it indicates negative correlation
with the true SGS energy transfer distribution. In addition, the SGS
force is given in the opposite direction of minor axis of the elliptic
vortex.

When we use the Smagorinsky model (Smagorinsky, 1963),
the SGS energy transfer and SGS force vectors distribute as shown
in Fig. 4. The Smagorinsky model as an eddy viscosity model
gives a low correlation with the true SGS energy transfer distribu-
tion. Abe model results in the SGS energy transfer using the eddy
viscosity, so that the correlation of the SGS energy transfer with
the filtered DNS would not be so high. The Smagorinsky model as
an eddy viscosity model gives the opposed force against the veloc-
ity vectors, so that it weakens the vortex. However, the nonlinear
terms of the Clark and Bardina terms give rise to radial force. It is
considered that these radial force affects the turbulent statistics.

The profiles of streamwise velocity, shear stress and kinetic en-
ergies of GS and SGS at Reτ = 180 with extremely coarse grids are
displayed in Fig. 5. The SM (Smagorinsky model with van Dri-
est wall damping function) model shows the overestimation of the
mean streamwise velocity profile. The LS model without using one
equation for kSGS also overestimates the mean streamwise velocity,
but improves the velocity profile better than the SM model. The LS-
1eq model with kSGS shows good predictions of mean streamwise
velocity in comparison with the LS and SM models. The LS and
LS-1eq models give better shear stress profiles than the SM model.
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Figure 5. Profiles of mean streamwise velocity, shear stress and
kinetic energies of GS and SGS at Reτ = 180 for extremely coarse
grids.

The peak locations of the GS kinetic energy by the LS and LS-1eq
models are in good agreement with the DNS result (Moser et al.,
1998) even in extremely coarse grid resolution. Note that only the
LS-1eq model has the profile of the SGS kinetic energy kSGS be-
cause it solves one equation of kSGS with Eqs. (8) and (9).

The profiles of mean streamwise velocity, shear stress and ki-
netic energies of GS and SGS at Reτ = 590 with fine grid resolution
are shown in Fig. 6. The profiles of mean streamwise velocity and
shear stress with the LS-1eq model coincide with the DNS results
(Moser et al., 1998) as well as the LS model. The GS kinetic energy
of the LS-1eq model is slightly diminished in comparison with the
LS model, but a part of the kinetic energy is distributed to the SGS
kinetic energy.

In Fig. 7, The profiles of mean streamwise velocity, shear stress
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Figure 6. Profiles of mean streamwise velocity, shear stress and
kinetic energies of GS and SGS at Reτ = 590 for fine grids.

and kinetic energies of GS and SGS at Reτ = 590 are shown in
coarse grid resolution. In this resolution, the dynamic Smagorinsky
model (DSM) (Germano et al., 1991) relatively exhibits the overes-
timations for the mean streamwise velocity and GS kinetic energy.
At the high Reynolds number, the differences of LS and LS-1eq are
little. Those models show good performance in comparison with
the DNS results (Moser et al., 1998).

In the coarse grid resolutions for Reτ = 180 and 590, the GS
kinetic energies of the LS and LS-1eq models become larger than
those of the DNS results. The improvement of this overestimation
is left in the future study.

SUMMARY
We proposed the improved SGS model based on the analysis

of the SGS force and SGS energy transfer. The model is based on
the Clark term as a similarity model. That term yields the distri-
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Figure 7. Profiles of mean streamwise velocity, shear stress and
kinetic energies of GS and SGS at Reτ = 590 for coarse grids.

butions of the SGS force and energy transfer with high correlation
for the true distributions obtained from the elliptic Burgers vortex.
The proposed model consists of the Clark term with only forward
scatter and the Clark term mixed with the SGS kinetic energy. The
latter term does not affect the SGS energy transfer but contributes
to the SGS force. This concept is proposed by Abe (2013). The
present model showed good predictions in turbulent channel flows
for Reτ = 180 with extremely coarse grid resolution and Reτ = 590
with fine and coarse grid resolutions. Especially, in the extremely
coarse girds, the SGS model using one equation for the SGS kinetic
energy considerably improves the mean streamwise velocity profile.
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