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Abstract
A method to account for the effect of interfacial surfactant con-

centration on multi-phase flows has been proposed by Schranner &
Adams (2016). The therein validated method builds up on the the
sharp-interface method of Hu et al. (2006). This work advances the
method to simulate and analyse configurations of industrial appli-
cability. In the majority of these configurations temperature gradi-
ents, commonly due to local heat sources or sinks, are the dominant
cause of the Marangoni flow. In order to account for the Marangoni
effect properly, the temperature distribution within the two-phase
flows under consideration has to be known. In this work, two nu-
merical approaches for the calculation of the temperature are pre-
sented and evaluated. In the first approach the temperature trans-
port equation, realized as a scalar transport equation, is coupled to
the finite volume algorithm of Schranner & Adams (2016). The un-
derlying method for the second approach is the weakly compress-
ible high-resolution approach for incompressible flows (Schranner
et al. (2013)), which is generalized to compressible and incompress-
ible flows. The extension to multi-phase flows with discontinuous
phases is formulated in this work. The approaches are evaluated
and compared on basis of the test flow proposed by Pendse & Es-
maeeli (2010). It is sufficiently complex in its evolution, yet simple
in its set-up and permits comparison to an analytical reference so-
lution. The application of the methods to further thermocapillary
flows is pursued. Both methods are robust and correctly predict the
evolution of the Marangoni flows and temperature fields. Numeri-
cal experiments indicate that the passive scalar method is faster than
the energy equation method. Yet, for two-phase flows with fluids of
very diverse properties the energy equation method is more accu-
rate.

Introduction
In many classical two-phase flows, such as viscous finger-

ing (Matar & Troian (1999)), drop break-up and coalescence
(Leal (2004)), tip-streaming (Bruijn (1993)), and buoyancy-driven
bubble-motion (Fdhila & Duineveld (1996)), the effects of locally
variable surface tension are significant. The causes are inhomo-
geneously distributed interfacial surfactants and temperature gradi-
ents.

The accurate and concurrently robust two-phase flow simula-
tion of immiscible fluids with large density and viscosity ratios in
combination with resolved interface dynamics can be numerically
challenging. Hu et al. (2006) have developed a fully conservative,

Eulerian, level-set based sharp-interface method (SIM) to simulate
immiscible, compressible flows. The sharp-interface framework
has demonstrated to accurately predict two-phase flows, with each
phase obeying different equations of state, and large density and
viscosity ratios (Lauer et al. (2012); Schranner et al. (2016)). A vis-
cous extension of the SIM for incompressible two-fluid flows is due
to Luo et al. (2015). A robust, more accurate, simpler and easy to
implement further-development of the SIM that incorporates invis-
cid, viscous, capillary and Marangoni interfacial stresses is due to
Schranner & Adams (2016). Generally, the SIM has demonstrated
to be a reliable and simple approach to capture multi-fluid inter-
faces robustly even for complex interface topology changes (Luo
et al. (2015); Hu et al. (2006); Lauer et al. (2012); Schranner et al.
(2016)).

To account for interfacial surfactant transport a method has
been developed and applied for the diffuse interface approach by
Teigen et al. (2011), Adalsteinsson & Sethian (2003), and Xu &
Zhao (2003). It has been improved in terms of accuracy, surfac-
tant mass conservation and computational efficiency by Schranner
& Adams (2016), employing the sharp-interface methodology. To
allow for the simulation of temperature-gradient driven Marangoni
flows, the transport of mass, momentum and energy within each
phase and across the interface needs to be considered appropriately.
Based on the accurate interfacial temperature distribution, the local
capillary and Marangoni stresses as well as their contribution to the
momentum and energy balance of the involved fluids can be com-
puted straightforwardly. This generalization is pursued within the
scope of this work. Therefore, two numerical approaches for ad-
vancing the temperature within the phases and exchanging energy
across the interface are presented. They are evaluated on basis of a
selection of test flows. Furthermore, the industrial application are
sought.

Basic Concepts
The finite-volume algorithm of Schranner et al. (2013) for

weakly compressible turbulent and non-turbulent single-phase
flows, further-developed to multi-phase configurations with capil-
lary and Marangoni effects Schranner & Adams (2016) is the un-
derlying numerical method. For incompressible flows the energy
equation is decoupled from the transport of mass and momentum
Panton (1984) and becomes obsolete. Yet, it is not obsolete if inter-
nal energy or temperature distributions are of interest.
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Passive scalar temperature transport equation (PS)
For incompressible multi-phase flows with temperature gradi-

ents and negligible temporal pressure fluctuations the temperature
equation

ρcp

(
∂T
∂ t

+u ·∇T
)
= ∇λ ·∇T +λ4T−

− 2
3

µ (∇ ·u)2 +2µ ((∇u) : (∇u))+βT u∇p+ ω̇

(1)

holds within the two-fluid domain Ω = Ωξ1 ∪Ωξ2 . The heat capac-
ity cp, coefficient of thermal expansion β , thermal conductivity λ ,
dynamic viscosity µ = ρν are material properties of the fluids ξ1
and ξ2. Numerically, within the multi-fluid cells, which are those
cells containing both fluids, the material properties are determined
from the volume fractions ζ ξi(t) = 1

V
∫

Ω∩Ωξi

dV of the fluid phases

ξi and the individual fluid properties: e.g. cp = (ζ cp)
ξ1 +(ζ cp)

ξ2 .
The derivatives of Eq. (1) are approximated with 4th-order central
(LHS: 1st term, RHS: 1st , 2nd , 3rd , 4th term) and 5th-order upwind-
biased (LHS: 2nd term, RHS: 5th term) finite difference schemes,
respectively. Note, however, from numerical experiments we find
that the order of convergence is independent from the choice of the
order for the central differences, thus due to the order of accuracy of
the scheme for fluid transport. The 6th term of Eq. (1) defines vol-
ume and area sources. To consider an area-distributed heat source
(AHS) the power of a radiative heat source P is considered to act
uniformly on a certain area AIFtot . The product with the ratio of
interface-area AIF[i, j,k] to volume V[i, j,k] of a cell [i, j,k] is the heat

added to each cell at the interface: ω̇ = P
AIFtot

AIF[i, j,k]
V[i, j,k]

.

Energy equation method (EEM)
The method of Schranner & Adams (2016) is extended to in-

corporate the energy equation for compressible as well as weakly
compressible flows, see also Schranner (2017). Hence, within
each fluid phase the transport equations for the conservative states
U = (ρ,ρu,ρet) are solved seperately. et = ekin + ei. By consider-
ing the interface-interaction flux in each multi-fluid cell

Xξi = {0,XM,ξi ,XE,ξi} (2)

the two subdomains Ωξi containing one of the fluids ξi are coupled
and the system is globally conservative. The momentum flux is:
XM,ξi = {X⊥,ξi +X‖,ξi} (Schranner & Adams (2016)). In contrast
to Schranner (2017) conductive heat transfer is also considered in
this work. Thus, the interfacial energy flux is

XE,ξi = XM,ξi ·uξi
I +qI ·nξi

I . (3)

Thereby, the interface heat flux is

qI = qI,α =−λI,αD(T )I,α (4)

with α = 1,2,3 denoting the Cartesian directions. Numerically, the
temperature gradient across the interface in direction α , denoted as
D(T )I,α , is approximated with a 4th-order central difference. The
stencil is constructed of T = {(ζ T )ξ1 +(ζ T )ξ2}. To account for the
discontinuous λ within interface cells, let

λI,α =
1

D
(∫ xα 1

λ (u)du
) . (5)

The order of the approximation of D of Eq. (5) is consistent with
the order of D(T )I,α . The interface temperature TI is obtained from
ei = cpTI .

Temperature dependent material properties
Temperature dependencies of the material properties are con-

sidered. For incompressible or weakly compressible fluids, the

Boussinesq approximation is used to account for a temperature de-
pendent density in the buoyant force, modeled as a source term:

ρ = ρre f ·
(
1−βT

(
T −Tre f

))
, (6)

where βT is the coefficient of thermal expansion.
The temperature dependent surface-tension σ is modeled with a lin-
ear Langmuir constitutive equation:

σ(T ) = σre f +
∂σ

∂T

(
T −Tre f

)
. (7)

σre f is the surface tension coefficient at a reference temperature
Tre f . These as well as the temperature gradient ∂σ

∂T are constant
and material-specific.
To consider solidification and melting phase changes the dynamic
viscosity is considered constant and relatively high for temperatures
lower than a specific the melting temperature TS. For higher tem-
peratures, the dynamic viscosity obeys an Arrhenius function. Con-
tinuous transition is achieved by means of a Heaviside function.

µ(T ) =


µmax, T < TS−2 ·δT
(µmax−µ(TS)) ·
(1−H (T −TS +δT,δT )) , TS−2 ·δT ≤ TS

µ0 · exp
(

E
T−TS

)
, T ≥ TS.

(8)

The temperature dependency of the specific heat capacity cp
includes a normally distributed latent heat hS around the melting
point, the width is ∆T :

cp(T ) = cp +

exp
(
−
(

T−TS
∆T

)2
)

√
π∆T

·hS. (9)

Thermocapillary Flow
To validate the two models and verify their implementation a

thermocapillary driven creeping flow with two superimposed planar
fluids is considered, see Pendse & Esmaeeli (2010). The analytical
solutions for the temperature T field, and the velocities u and v are
available. The geometrical set-up is shown in figure 1.

Figure 1. Geometrical Set-up for thermocapillary flow.

δ1 = δ2 = 1.0 and l = 4δ1 are used. The boundary condition
are periodic in x1-direction. In x2-directions a no-slip condition is
assumed. The uniform temperature T (x1,δ2) = Tc is imposed at the
top boundary. Along the bottom boundary a sinusoidal temperature
distribution with T (x1,−δ1) = Th +∆T cos( 2π

l x1) is assumed. Th =
20, ∆T = 4, Tc = 10. The steady-state solution may be found in
Pendse & Esmaeeli (2010) or Schranner & Adams (2016). The
kinematic viscosities are νξ1 = νξ2 = 0.2. Both fluids obey the Tait
equation of state, with γ = 1.000001. The speed of sound depends
on the density. For fluids with ρ = 1.0 the speed of sound is a = 10,
for fluids with ρ = 1000 the speed of sound is a = 1.0. Moreover,
∂σ

∂T =−5 ·10−4 and σ0 = 0.03 at Tre f = 10. Four different cases are
considered. For the upper fluid ρξ2 = 1.0, cξ2 = 2/3 and λ ξ2 = 0.2.
The density, heat capacity and the thermal conductivity of the lower
fluid are case-dependent:
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• Case 1: ρξ1 = ρξ2 , cξ1 = cξ2 and λ ξ1 = λ ξ2 ,
• Case 2: ρξ1 = ρξ2 , cξ1 = 5cξ2 and λ ξ1 = 5λ ξ2 ,
• Case 3: ρξ1 = 1000ρξ2 , cξ1 = cξ2/1000 and λ ξ1 = λ ξ2 ,
• Case 4: ρξ1 = 1000ρξ2 , cξ1 = cξ2 5/1000 and λ ξ1 = 5λ ξ2 .

The reference length and velocity are Lre f = δ1 = 1.0 and

Ure f =
| ∂σ

∂T ∆T |
µξ1

δ1
l = 1

400 , respectively. Thus, one finds that the
Reynolds, Marangoni, Peclet, capillary, and Weber numbers are

Re= Ure f Lre f

νξ2
= 0.0125, Ma= Ure f ρξ2 cξ2 l

λ ξ2
= 1

30 , Pe= Ure f Lre f ρξ2 cξ2

λ ξ2
=

1
120 , Ca= ρξ2Ure f νξ2

σ0
= 1

60 We=
ρξ2U2

re f Lre f

σ0
= 1

4800 . These numbers
comply Re<< 1, Ca<< 1 and Ma<< 1, hence the analytical solu-
tion of Pendse & Esmaeeli (2010) hold.
To evaluate the simulation, the L∞- L1- and L2- absolut errors are
evaluated. The absolute error norms are calculated for u, v and T

L∞ = maxM (|ε|) , (10a)

L1 =
∫

∆V
|ε|dV ′ ≈∑

M
{|ε|∆V}[i, j] , (10b)

L2 =

(∫
∆V
|ε|2dV ′

)1/2
≈
(

∑
M
{|ε|2∆V}[i, j]

)1/2

. (10c)

The resolution ∆x is reduced in five steps from 0.2 to 0.00625.

Case 1
The first case serves as a basic verification and validation con-

figuration. The temperature and flow field is depicted in Fig. 2.
Figure 3 shows the L1 errors for the EEM and PS approaches.
For both methods the results converge to the analytical solution in-
dependent from the chosen approach. Regarding T , L1 is below
0.0149 for PS and 0.266 for EEM. The maximum error is lower
than 0.02 for both methods at the largest resolution. The largest de-
viation of u and v, found on the interface, is 2.71 · 10−5 (PS) and
3.74 ·10−5 (EEM), 1.80 ·10−5 (PS) and 1.74 ·10−5 (EEM), respec-
tively. With respect to the maximum velocities of umax = 3 · 10−4

and vmax = 6 · 10−5 these values indicate good results even for the
lowest resolution. Spatial refinement leads to a reduction in the
errors. The convergence order is between 1.0 and 0.3 for the veloc-
ities, and 1.0 < L1(T )< 1.6 for T .
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Figure 2. Results (PS) for Case 1 with ∆x ≈ 1
20 at steady state,

t = 20.

Case 2
The second case simulates two fluids with the same density and

different thermal conductivities and capacities. This corresponds to
a highly simplified model of a laser beam welding process, as air
and metal have a large difference in their thermal conductivities and
capacities. Figure 4 depicts the L1 errors for the EEM and PS. L2
and L∞ are not shown for clarity. The simulation results for both
methods are in a good agreement with the analytical solution. EEM
leads to more accurate results than the results of PS. This is found
from evaluating all three error norms.
A possible explanation may be that while the EEM calculates the
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Figure 3. L1 error norms for u , v and T for Case 1 with PS and
EEM at steady state, t = 20.

energy for both fluids and models the heat flux across the sharp
interface, the PS calculates the temperature for the entire domain
without explicitly considering the interface. The deviations from
the analytical solution are larger with the PS. Consequently, larger
deviations in the temperature gradient are found which lead to dif-
ferent results of the flow velocities. The maximum velocities of the
analytical solution are umax,anly ≈ 5.60 ·10−4 and vmax,anly ≈ 1.20 ·
10−4. The simulated maximum velocities are umax,PS ≈ 5.75 ·10−4,
vmax,PS ≈ 1.24 · 10−4, umax,EEM ≈ 5.37 · 10−4, vmax,EEM ≈ 1.16 ·
10−4 found at a mesh width of ∆x≈ 0.05. The accuracy of the first
case is not achieved for both methods. The temperature order of
convergence is about 0.2 for PS and 1.0 for EEM.
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Figure 4. L1 error norms for velocity u , v and temperature T for
Case 2 with PS and EEM at steady state, t = 20.

Case 3
This case extends Case 1 by considering a density of 1000.

Figure 5 depicts the L1 errors for the temperature at different res-
olutions. The velocity contours are depicted in figure 6 The tem-
perature distribution approaches the analytical solution well. The
maximum errors, e.g. L∞, are identical to Case 1 for both methods
and same resolutions.
In the upper fluid, Ωξ2 , which has a lower density, significantly
higher velocities are observed in the stationary state than in Ωξ1
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Figure 5. L1 error norms for T for Case 3 with PS and EEM at
steady state, t = 20.

independent from when employing EEM or PS.

According to Pendse & Esmaeeli (2010) the density has no in-
fluence on the solution as long as Re<< 1, Ca<< 1 and Ma<< 1.
The ratio of the two dynamic viscosities, which is reduced from 1
(Case 1) to 1000, has only an influence on the maximum velocity
in the analytical solution. Pendse & Esmaeeli (2010) do not im-
pose any restriction to the density ratios. The question is raised, at
this venue, whether the analytical solution does or does not apply
to combinations of fluids with very large density ratios, although
the creeping flow conditions are fulfilled for one of the two fluid.
Within ξ1 (the lower fluid) Ca = 1000

60 for Case 3, for Cases 1 and 2
it is Ca = 1

60 . Hence, ξ1 cannot be considered a creeping flow, even
though ξ2 can.
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Figure 6. Velocities u and v with a density-ratio of 1000 at steady
state, t = 20.

Case 4
Case 4 is a combination of Cases 2 and 3. It is a configuration

that resembles laser beam welding better than the previous cases.
Figure 7 depicts the L1 temperature error norms for when employ-
ing EEM and PS. The temperature fields as well as the resolution
dependent error norms are found to be identical to those of Case 2.
The velocities are found to differ significantly from the analytical
solution. A possible explanation is given for Case 3, which also
holds for Case 4.

0.0150.030.060.12

10−1

100
∆x0.2

∆x1.0

resolution ∆x
L 1

L1,T,PS
L1,T,EEM

Figure 7. L1 error norms for T for Case 4 with PS and EEM at
steady state, t = 20.

Thermocapillary motion of a Drop

Figure 8. Principal sketch of the Set-up for Rising Bubble.

Another test case for the validation of the implemented equa-
tions is provided by Young et al. (1959), who have investigated the
velocity of a two-dimensional rising drop. For this purpose, a drop
with the radius R is set in a cylinder with the height L and the radius
5R (see figure 8). Furthermore, a linear temperature field is speci-
fied over the height of the cylinder. The temperature at the bottom
of the cylinder is T (y = 0) = TH and at the top T (y = L) = TC. This
results in a linear temperature profile. The surface tension changes
linearly with the height according to the temperature distribution.
For validation, the average ascent rate is calculated and compared
to the ascent rate uY GB according to Young et al. (1959). The em-
pirically evaluated ascent rate is

uY GB =
2
(

∂σ

∂T ·
TH−TC

L R−∆ρgR2 µ1+µ2
µ1

)
9µ1 +6µ2

. (11)
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The average ascent rate of the simulated drop is determined by

ū2 =
1

V2

∫
Ω2

u2dV =
1

V2
∑
M

u2ζ
ξ2 ∆V, (12)

where M is the number of cells, V2 is the volume of the drop, and ζ ξ2

is the volume fraction of the disperse phase. Furthermore, R = 0.5
and L = 7.5R. For the fluids, ρξ1 = ρξ2 = 0.2, aξ1 = 5.0, aξ2 = 40.
The Tait equation of state holds for both fluids. The initial pres-
sure for both fluids is equal to p0 = 0. With the dynamic viscosity
µξ1 = µξ2 = 0.1, g = 0, ∂σ

∂T = −1 and the temperatures TC = 300
and TH = 300.5, a theoretical ascent rate of uY GB = 4

45 is obtained.
Thus, the Reynolds number is Re= 8

45 . This configuration is simu-
lated with EEM and PS. The results are nearly identical. For clarity,
we only provide results for PS in Figs. 9, 10.
A convergence analysis is performed with a spatial resolution rang-
ing from 2.5

32 to 2.5
256 , four different refinement levels are simulated.

For a resolution of ∆x = 2.5
128 the deviation from the theoretical as-

cent rate is already less than 1%. The results can be considered to
be converged for a resolution of ∆x = 2.5

128 as these do not differ for
a grid of ∆x = 2.5

256 . The predicted ascent rates of the drop and the
pressures agree well with the empirical solutions.
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Figure 9. Normalised ascent velocity for different resolutions
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Figure 10. Simulated pressure at x = 1.25 and t = 10 compared to
theoretically expected pressure

Application Example - Laserdeep-Welding
Based on Case 4, a simple set-up to simulate heat conduction

welding is developed. Copper is chosen to be the welding material
and air as the ambient gas. The geometrical set-up is l = 0.001 and
δ1 = δ2 = 0.00025, comparable to figure 1. Moreover, ρξ2 = 1.19,
cξ2 = 1004, µξ2 = 1.8485 · 10−5 and λ ξ2 = 0.0262, ρξ1 = 8960,
cξ1 = 385 and λ ξ1 = 394. The latent heat of copper is hξ1

S = 207000,
it is distributed normally with ∆T = 25 around the melting point
T ξ1

S = 1357, see Eq. (9). The dynamic viscosity is modeled ac-

cording to Eq. (8), µ
ξ1
max = 100, µξ1(TS) = 0.0003 and Eξ1 = 3666.

The heat source is a laser beam, modeled as an AHS. It acts within a
small region with an focus diameter of d f = 0.0003 and a powerden-
sity of 3 ·109. To account for thermal convection, ρ(T ) is modeled
according to Eq. (6). To model the temperature dependent surface
tension Eq. (7) holds. The set-up is shown in Figure 11. The feed

Figure 11. Geometrical setup of the laser welding configuration.

rate is zero in order to examine the convection in the molten pool.
We simulate the initial heat-up process. The flow within the molten
metal pool and air are visualized in Figs. 12 and 13, respectively.
Note that the molten metal pool is the area enclosed by the T = TS-
line, the temperature within the enclosed area is higher than TS. The
two-dimensional model with the selected parameters shows that the
melting temperature is reached after 3.5 ·10−4s. A Marangoni flow
develops, driving the liquid phase. The maximum velocities are ob-
served at the interface where the melting temperature TS = 1357 is
reached. The comparably higher velocities in the air are due to the
comparably low dynamic viscosity of the air.

Figure 12. Fluid flows in molten metal pool at t = 1.5 ·10−3.

Conclusion
Two methods to simulate two-phase immiscible, incompress-

ible flows with temperature dependent material properties have been
presented. Both methods are applicable to simulate Marangoni
flows with a sharp-interface. In the first method temperature is prop-
agated as a passive scalar, multifluid cells are considered by mixing
fluid properties, the transport equations of mass and momentum ap-
ply for the fluids in motion, the exchange of momentum across the
interface couples the two phases. The second method employs the
transport equations for mass, momentum and energy and couples
the immiscible phases by means of interface-fluxes, modeling the
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Figure 13. Fluid flow in ambient gas at t = 1.5 ·10−3.

exchange of momentum and energy across the interface. By com-
paring the results to analytical solutions of a selection of test flows
the methods are verified and their implementations validated.

Both methods are robust and correctly predict the evolution of
the Marangoni flows and temperature fields. The simulation results
of a thermocapillary flow are in excellent agreement with analyti-
cal data for both methods. Numerical experiments indicate that the
passive scalar method is faster than the energy equation method.
Yet, for two-phase flows with fluids of very diverse properties the
energy equation method is more accurate. As an industrial applica-
tion example a two-dimensional base configuration of a laser beam
welding process has been simulated.
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