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ABSTRACT 
The new experimental data of the fully developed pipe 

flow using Hi-Reff at AIST, NMIJ is presented. The 
experiments was performed at higher Reynolds number 
region up to 107. The velocity profile data was fitted to a 
velocity profile formula based on the log law, and an 
equation for the friction factor was derived by integration, 
which agreed very well with the friction factor data 
obtained from pressure drop and flowrate. The deviation 
between the derived equation and the measured friction 
factor data is less than 1%, which indicates the high 
reliability of the measurement data at the Hi-Reff.  

INTRODUCTION 
A pipe flow, which is one of the wall-bounded flows, 

is widely used in engineering fields. Since obtaining the 
knowledge of the physics of the pipe flow is very 
important for the fluid transportation, many works for the 
turbulent pipe flow under fully developed have been 
performed since early time of 1900’s. However, even the 
functional form for the mean velocity profile is still not 
complete due to the Reynolds number effect. As 
summarized by Nagib and Shauhan (2008), the mean 
velocity profile form are not consistent among many 
previous studies (ex; den Toonder and Nieuwstadt, 1997, 
Zagarola and Smits, 1998, Monty, 2005).  

One of the reason for the inconsistency of the velocity 
profile formulae is that the wall shear stress used for the 
scaling of the velocity profile is also inconsistent among 
the experiments. To obtain the wall shear stress of not 
only the pipe flows but also wall-bounded flows, the 
friction factor is very important. As well known, the 
Prandtl equation, which is given by the fitting to the 
experimental data by Nikradse (1966), has been accepted 
widely and for long time. On the other hand, as recent 
result at higher Reynolds number, Zagarolla and Smits 
(1998) presented the data for the friction factor and a new 
equation. The new equation is largely deviated from the 
Prandtl equation especially at higher Reynolds number. 

However, other experimental results for higher Reynolds 
number region cannot be found in previous reports.  

The second reason of the inconsistency is the 
Reynolds number dependency of the velocity profile 
formula. As investigated in other type of the wall bounded 
flows, boundary layer and channel flow, the constants in 
the velocity profile formula are influenced by Reynolds 
number (Nagib and Shauhan, 2008). To discuss the 
universality of the velocity profile, the pipe flow 
experiments at higher Reynolds number region is required. 

In this paper, the new experimental results for the 
friction factor and the velocity profile at high Reynolds 
number up to 107 are presented. The Reynolds number 
dependency of the constants in the formulae of the friction 
factor and the velocity profile are discussed using the 
experimental result. Furthermore, to show the reliability of 
the experimental results, the higher level consistency of 
the measurement data between the friction factor and 
velocity profile is presented.  

EXPERIMENTAL METHOD 

Experimental Facility 
In this experiments, the Hi-Reff (High Reynolds 

number actual flow facility) at NMIJ, AIST was used 
(Furuichi et al, 2009). The Hi-Reff is illustrated in Fig.1. 
The scale of this facility is 200 m  50 m length including 
the over flow head tank with 30 m height and the reservoir 
tank with 1000 t. This facility serves the national standard 
of water flowrate in Japan. The working fluid is water. 
Regarding the general specifications of this facility, the 
maximum flow rate in the test section is 3.33 m3/s, and the 
temperature is controllable from 20 C to 75 C. The 
available pipe diameter is up to 600 mm. According to this 
flow condition, the maximum Reynolds number is 
approximately 2.0107. The flow rate is measured by the 
static gravimetric method or the reference flowmeters 
calibrated by the weighing tank. The uncertainty of the 
flow rate ranges from 0.060% to 0.10% with the coverage 
factor of k=2. 
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Experimental Method 
The friction factor is obtained by the measurement of 

the pressure drop between two pressure taps installed in 
smooth pipes with D = 100 mm (P1) and 387 mm (P2). 
The roughness of the pipes are Ra = 0.1 m and 0.2 m, 
respectively. The experiments are performed at two 
different temperatures: T=20 °C and 70 °C for P2. The 
examined Reynolds number range is 7.1103<ReD< 
1.8107. The uncertainty of the friction factor 
measurement is estimated to be app. 1.0% with a coverage 
factor of 2. In this paper, the data for 1.2104<ReD< 
1.0107 is used for the analysis. 

The velocity profile was measured by using laser 
Doppler velocimetry (LDV). The water temperature is 
201 °C and the examined Reynolds numbers are ReD = 
3.85104, 7.33104, 8.98104, 1.49105, 1.88105, 
2.84105, 3.86105, 5.40105, 7.45105, and 1.11106. 
The control volume of the LDV system are 0.048 mm, 
0.107 mm, and 0.40 mm for the streamwise, radius and 
tangential directions respectively. The spatial resolution in 
the y direction takes into account the inclination angle of 
the line for the measurement. The uncertainty of the 
velocity measurement is estimated to be 0.2% with a 
coverage factor of 2.  

EXPERIMENTAL RESULT 

Friction Factor 
The experimental result of the friction factor  is 

shown in Fig.2. The Reynolds number range examined is 
7.1103<ReD<1.1105 for P1 and 4.7104<ReD<1.8107 
for P2.  As mentioned, the experiment is performed under 
two temperature conditions for P2. The Reynolds number 
ranges are 4.7104<ReD<6.7106 for T=20 C and 
3.3106<ReD<1.8107 for T=70 C. Even though the 
present experiments are performed in different pipes and 
under different temperatures, the data plotted in the figure 
show smooth trends, and the scattering of the data is very 

small. In the overlapping Reynolds number ranges where 
the data from both pipes and both temperature conditions 
overlap, the deviation of the measured friction factors is 
less than 1%. This good agreement indicates the high 
reliability of the measurement result.  

As the comparison with the results of the Superpipe, 
the present experimental results (McKeon et al,, 2004) 
show nice agreement with them for ReD<2.0105. 
However, the difference between two results increases 
with Reynolds number for ReD >2.0105. At ReD=1.0107, 
the present experimental results is 6% smaller than the 
results of the Superpipe.  

As the best fitting curve of the present experimental 
results, the following equation is given. 

  176.1log092.2
1

D  


Re (1) 

Note that the wall shear stress in the following section is 
obtained using the friction factor given by this equation. 
For more detail results, see reference (Furuichi et al., 
2015). 
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Figure 1. Overview of high Reynolds number actual flow 
facility (Hi-Reff). 
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Figure 2. Experimental results for friction factor. 
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Figure 3. Examples of experimental results for velocity 
profile. The solid line is the fitting curve according to 
Musker equation. 
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Velocity Profile 
The examples of the velocity profile obtained in this 

experiment are shown in Fig.3. The meaning of the 
several fitting curve indicated in Fig.3 will be explained in 
the following. 

The general velocity profile based on the log-law is 
given by the following. 

ByU   ln
1


(2) 

where   is Kármán constant and B is the additive constant. 
The both value obtained by each velocity profile is shown 
in Fig.4 and Fig.5. The both values have the Reynolds 
number effect. The Kármán constant is ranged from 0.39 
to 0.40 for ReD<2.0105 and it decreases suddenly at 
ReD2.0105. For the higher Reynolds number region, 
ReD>5.0105, it takes almost constant value, which is 
0.383. This results is different with results of the 
Superpipe, which is 0.41-0.42. On the other hand, this 
result shows nice agreement with the valued given in the 
recent results for the boundary layer and channel flow 
(Nagib and Shauhan, 2008). Considering with the 
canonical flow of the wall-bounded flow, such 
consistency is very interested.  
     The red broken lines in Fig.3 are Eq.(2) with  and B 
as shown in Fig.4 and 5. 

DISCUSSION 

Velocity Profile Form 
By integrating Eq.(2) over the pipe, the following 

relation for the friction factor is obtained. 

   






  24ln

2

3

22

1

22
ln

22

11
D





B

Re (3) 

According to this equation,  and B in Eq.(1) is calculated 
to be 0.389 and 4.984, respectively. These values should 
be consistent between the velocity profile and friction 
factor. In other words, the consistent values indicate the 
validity of the measurement result. Unfortunately, these 
values are not consistent with the result of the velocity 
profile. This inconsistency is firstly from that Eq.(3) does 
not include the viscous sublayer and the wake. Then, to 
derive the equation for the friction factor and to compare 
it with the experimental data with high accuracy, closer 
fitting of the velocity profile is necessary.  

For the inner layer, the equation reported by Musker 
(1979) is well known although it is not written in this 
abstract. This equation represents the velocity profile of 
the inner layer, however, a small deviation near y+ = 50 
(the hump) is observed. To fit the velocity profile near y+ 

= 50, Monkewitz et al. (2007) proposed the following 
equation, 

  
2

1
2

iMi

lnexp

d

dy
UU


 
 (4) 

where, UiM is the velocity profile given by the Musker 
equation (1979). Monkewitz et al. (2007) proposed d1 = 30 
and d2 = 2.85. For the boundary layer, Eq.(4) suitably 
represents the velocity profile shown by Chauhan et 
al.(2009). For the pipe flow in this experiment, d1 and d2 
proposed by Monkewitz et al. cannot suitably represent 
the velocity profile data. By fitting to the velocity profile 
data, d1 = 26.5 and d2 = 4.53 are proposed in this paper. 

For the outer layer, Coles (1956) proposed the wake 
function as follows. 

 


W
Π

ByU
2

ln
1

o   (5) 

where  = y/(D/2). Several wake functions W() have 
been proposed in previous papers. In this paper, the 
following equation is used. 

  43
2

2
3

1 bbbbW   (6) 
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Figure 4. Variation of Kármán constant. 

104 105 106
3.0

4.0

5.0

6.0

ReD

B
B=4.335

Figure 5. Variation of additive constant. 

6A-4



4 

where b1 = -5.907, b2 = 8.093, b3 = -9.85610-1, and b4 = 
1.00110-4. Assuming Eq.(6), the variation of  is 
obtained from the measured velocity profile as shown in 
Fig.6. Similar to the behavior of the Kármán constant and 
the additive constant,  also has a Reynolds number 
dependence.  has a peak value of around ReD  105, and 
it has an almost constant value for ReD > 3.0105.  = 
0.1041 is obtained as the average for ReD > 5.0105. 

As the final form of the velocity profile, Eq.(4) and the 
wake function are combined. The following fitting 
velocity profile is shown in Fig.3.  

 


W
Π

UU
2

i    (7) 

This equation is shown in Fig.3 as the solid line. The 
fitting velocity profile suitably represents the velocity 
profile data except in the viscous sublayer at higher 
Reynolds numbers. The relative deviation of the velocity 
profile data from Eq.(7) to the maximum velocity is less 
than 0.7%. 

Consistency between Velocity Profile and 
Friction Factor. 

When the strict relation for the friction factor from the 
velocity profile is necessary, Musker equation should be 
integrated. However, the integration of it is complexed, 
and the consistency for the additive constant B is difficult 
to observe directly. By integrating the defect of the 
velocity given by Eq.(5), the following equation is 
obtained. 

   

 D4
321

D

36102

24ln
2

3

22

1

22
ln

22

11

ReCb
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B
Re
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


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

 







 






 (8) 

where C(ReD) is the correction term for the inner layer. In 
this experiment, C(ReD) is estimated by the numerical 

integration of the difference between Eq.(2) and Eq.(4) as 
follows. 

    






  2/

*
Eq2Eq42D 2

8 D

y
dyy

D
UU

D
ReC (9) 

where UEq2
+ and UEq4

+ are the velocity profiles given by 
Eq.(2) and Eq.(4), respectively. y* means the wall normal 
position where Eq.(2) and Eq.(4) cross each other in the 
viscous sublayer. The unintegrated region less the y* does 
not influence to the result of C(ReD). Finally, the fitting 
curve for C(ReD) is given by the following. 

  231.1

DD 15614  ReReC (10) 

The influence of the correction to the friction factor is up 
to app. 4% at ReD = 1.0104. However, it decreases with 
the Reynolds number and is 0.02% at ReD = 1.0106. 
Furthermore, the influence is negligibly small at 
ReD=1.0107.  
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Figure 6. Variation of  in wake function. 
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To obtain the final form of Eq.(8), the constants , B, 
and  are substituted. As shown in above, these constants 
have Reynolds number dependency. But, these values 
seem to be constant for ReD > 5.0105. If these constants 
do not change over the examined Reynolds number range, 
which is ReD > 1.1106, the equation using them is 
expected to represent the friction factor data. Substituting 
the constants  = 0.383, B = 4.335, and  = 0.1041 and 
Eq.(10), the following equation is given.  

  231.1

DD 15614361.1log126.2
1  ReRe 


(11) 

It should be noted that Eq.(11) is the relationship for the 
friction factor completely obtained by the mean velocity 
profile data. Equation (11) is drawn in Fig.7(a), and the 
difference between Eq.(11) and the friction factor data at 
the Hi-Reff is shown in Fig.7(b). e is the experimental 
data and f is the friction factor given by Eq.(11). The 
difference between Eq.(11) and the friction factor data is 
from –0.48% to –0.04% for the range of 5.4105 < ReD < 
1.1106, as shown by the larger markers. This result 
shows that the friction factor derived by the mean velocity 
profile data is highly consistent with the friction factor 
data. Furthermore, for Reynolds numbers larger than 
1.1106, the differences between Eq.(11) and the friction 
factor data are almost constant at –0.33% to 0.26%. The 
average deviation for 5.4105< ReD < 1.0107 is –0.14%.  

On the other hand, for lower Reynolds numbers ReD < 
5.4105, Eq.(11) is not consistent with the friction factor 
data. This inconsistency is caused by the constants being 
different between higher and lower Reynolds numbers. 
Although those constants have Reynolds number 
dependency, the average value for the low Reynolds 
number region 8.0104 < ReD < 1.0106 is used to derive 
the equation for the friction factor. The constants are  = 
0.395, B = 4.785, and  = 0.1945, and the following 
equation is given:  

  231.1

DD 15614096.1log077.2
1  ReRe 


(12) 

This equation is also shown in Fig.7(a) and (b). Equation 
(12) is clearly closer to the friction factor data than
Eq.(12), especially at low Reynolds numbers. In Fig. 7(b),

the deviations in the Reynolds number ranges mentioned 
above are emphasized by the larger markers. The 
deviation of the friction factor data from Eq.(12) for this 
Reynolds number range is app. –0.7%. Furthermore, 
Eq.(12) represents the friction factor data of less than 1% 
up to ReD = 2.0106. However, for higher Reynolds 
numbers, the deviation has Reynolds number dependency. 
With an increase in the Reynolds number, the deviation 
increases. This shows that the constants for Eq.(12) are 
not consistent with the fluid mechanics of pipe flow at 
higher Reynolds numbers.  

Best Fitting to Friction Factor Data. 
In the previous sections, the relationship between the 

friction factor and Reynolds number is obtained by the 
velocity profile data. The friction factor obtained from the 
velocity profile data is consistent with the friction factor 
data at the Hi-Reff. This means that both measurements at 
the Hi-Reff are performed with high accuracy and 
reliability. In this section, the constants in the equations 
for the friction factor given in the previous section are 
obtained by fitting to the friction factor data at the Hi-Reff. 
However, since the constants have Reynolds number 
dependency, it is difficult to apply them for a wide range 
of Reynolds numbers. When the equation is derived 
according to the correct fluid mechanics in the pipe, the 
relationship between the friction factor and Reynolds 
number cannot represent a unique equation for ReD > 
1.0104. McKeon et al. (2005) suggest that the friction 
factor behavior falls into three regimes of Reynolds 
numbers: ReD < 1.0105, 1.0105 < ReD < 3.0105, and 
ReD > 3.0105 (although they express them with unique 
equations). The criteria around ReD = 3.0105 is also 
found in the results at the Hi-Reff, as shown in the results 
of the velocity profile based on log law. The constants for 
the log law have Reynolds number dependency for ReD < 
3.0105, and they are constant for ReD > 5.0105. In this 
section, the coefficients are estimated for different 
Reynolds number ranges to observe the Reynolds number 
dependency.  

The friction factor data is fitted to Eq.(7), and the 
constants , B, and  are determined. The influence of the 
inner layer is given by Eq.(9). The obtained constants are 
shown in Table 1 for different Reynolds number ranges. 
Depending on the Reynolds number range, the constants 
are varied. The result is roughly classified into two 

Table 1. Constants for variable Reynolds number range 

Data source 
ReD 

 B  C 
from to 

Friction factor 

1.2104 3.3105 0.404 5.455 0.102 -0.871

1.2104 1.0106 0.402 5.383 0.102 -0.911

1.2104 1.0107 0.394 5.082 0.099 -1.075

3.3105 1.0107 0.384 4.450 0.099 -1.375

5.5105 1.0107 0.383 4.386 0.099 -1.405

1.5106 1.0107 0.384 4.417 0.099 -1.391
Velocity profile 5.5105 1.0106 0.383 4.335 0.104 -1.361
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regions with a boundary of ReD = 3.0105. When the 
Reynolds number range includes ReD < 3.0105, the 
Kármán constant is from app. 0.39–0.40. It should be 
noted that the results in the first and second rows in Table 
1 are similar to the constants of the Prandtl equation. On 
the other hand, when the Reynolds number range does not 
include ReD < 3.0105, the Kármán constant is app. 0.385, 
as shown in the fourth and fifth rows. Such result 
behaviors show the consistency with the result of the 
velocity profile data, as shown in Figs.2 and 3.  

As the best fitting for friction factor data at a wide 
range of Reynolds numbers, the following equation is 
proposed using the constants on the third row in Table 1. 

  231.1

DD 15614025.1log064.2
1  ReRe 


(13) 

This equation represents the friction factor data from –
0.83% to 0.77% for 1.8105 < ReD < 1.0107. However, it 
should be noted that the constants do not reflect the actual 
constants in the velocity field of the pipe. 

CONCLUSION 
The new measurement data of the friction factor and 

the velocity profile in a smooth pipe at the Hi-Reff was 
obtained at high Reynolds numbers up to 107 with high 
accuracy. Using the experimental data, the relation 
between the friction factor and the velocity profile was 
discussed in detail in this paper.  

The consistency between the velocity profile and the 
friction factor is investigated by integrating the velocity 
profile data. The velocity profile data is fitted to the log 
law, and the equation for the friction factor is derived by 
the integration of the fitted velocity profile. The equation 
obtained suitably represents the friction factor data. The 
deviation of the equation from the friction factor data is 
less than 1%. By this analysis, it is indicated that the 
friction factor for 104 < ReD < 107 cannot be expressed by 
a unique equation of the velocity profile based on the log 
law because the Kármán and additive constants have 
Reynolds number dependencies at low Reynolds numbers, 
ReD < 3105. For larger Reynolds numbers, ReD > 5105, 
the friction factor can be expressed by a unique equation, 
which yields  = 0.383 and B = 4.335. 

Based on the equation form given by the velocity 
profile, the best fitting constants for the friction factor data 
are proposed. For the lower Reynolds number region 
1.2104 < ReD < 1.0106, the Kármán constants and the 
constant C are roughly similar to the Prandtl equation 
values, which are  = 0.402 and C = –0.911. For the 

higher Reynolds number region 5.5105 < ReD < 1.0107, 
they are estimated as  = 0.383 and C = –1.405, which 
yield B = 4.386. Those values are in good agreement with 
the constants obtained from the velocity profile data. The 
equation shows that the friction factor data is less than 
0.8%. 
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