
10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017

The mesolayer of attached eddies in wall-bounded turbulent flows

Yongyun Hwang

Department of Aeronautics

Imperial College London
South Kensington, SW7 2AZ, London, UK

y.hwang@imperial.ac.uk

ABSTRACT
It has recently been reported that the outer peak in the second-

order statistics of the streamwise velocity depends on the Reynolds

number. Starting from this puzzling observation, here I propose that

the streamwise velocity component of each of the energy-containing

motions in the form of Towsnend’s attached eddies exhibit inner-

scaling nature in the region close to the wall (see figure 1). Some

compelling evidence on this proposition has been presented with a

careful inspection of scaling of velocity spectra from direct numer-

ical simulations and a linear analysis with an eddy viscosity. It is

shown that this behavior can emerge due to inhomogeneous turbu-

lent dissipation in the wall-normal direction, and also enables one

to explain the Reynolds-number-dependent behavior of the outer

peak as well as the near-wall penetration of the large-scale outer

structures in a consistent manner. Extension of this concept to

Townsend’s attached eddy hypothesis further reveals that the self-

similarity in the streamwise velocity of the attached eddies would

be theoretically broken in the region close to the wall.

INTRODUCTION
It has recently been reported that the wall-normal location of

the outer peak exhibit dependence on the friction Reynolds num-

ber Reτ : the wall-normal peak location ypeak in turbulent boundary

layer and pipe flow was shown to be y+peak ∼ Reτ 1/2 at least for

Reτ . 20000, and even the streamwise wavenumber retaining the

peak was found depend upon the Reynolds number (Mathis et al.,

2009; Vallikivi et al., 2015). This observation is reminiscent of the

concept of ‘mesolayer’ defined for the construction of the mean ve-

locity (Long & Chen, 1981; Afzal, 1982, 1984; Sreenivasan & Sa-

hay, 1997; Wei et al., 2005). The introduction of the mesolayer orig-

inates from the observation that the inner-scaled peak wall-normal

location of the Reynolds shear stress scales as Reτ 1/2 (Long &

Chen, 1981), and the related mean momentum balance implies that

the viscous wall effect on the mean velocity would not be negligi-

ble at least below the peak wall-normal location of the Reynolds

shear stress (Sreenivasan & Sahay, 1997; Wei et al., 2005). Given

the fact that the outer peak in the spectra of the streamwise velocity

would probably indicate very-large-scale motion (VLSM; the long

streaky motion in the outer region), the emergence of its Reynolds-

number-dependent behavior indicates that this structure, especially

the part below the outer peak, would experience some viscous in-

fluence of the wall. In this respect, it is interesting to note the recent

observations on the influence of the large-scale outer structure to

the near-wall motions (Hutchins & Marusic, 2007; Mathis et al.,

2009; Agostini & Leschziner, 2014, 2016). The existence of such

an inner-outer interaction in the near-wall region would require the

large-scale outer structure to reach the near-wall region at least to

some extent (i.e. the footprint of the large-scale structure). This

indicates that the outer structure in the outer coordinate should ex-

tend more to the wall on increasing the Reynolds number, resulting

in a feature which would be difficult to explain if the large-scale

structure scales only in the outer length scale.

Figure 1. Premultiplied streamwise wavenumber spectra of

streamwise velocity (a) in the λ+
x − y+ plane and (b) in the

λx/h− y/h plane. The contour labels in (a) are 0.2, 0.4, 0.6, and

0.8 times of each maximum, while those in (b) are 0.1 and 0.2 times

of each maximum. Here, the dashed, solid and shaded contours are

respectively from Reτ = 934, Reτ = 2003 (Hoyas & Jiménez, 2006)

and Reτ = 5186 (Lee & Moser, 2015). In each case, the region of

interest is highlighted with a box.

The speculated feature is shown in Fig. 1 where the stream-

wise wavenumber spectra of streamwise velocity of turbulent chan-

nel flow are given from direct numerical simulation data available

at Reτ = 934,2003,5186 (Hoyas & Jiménez, 2006; Lee & Moser,

2015) where Reτ = uτ h/ν (uτ is the friction velocity, ν kinematic

viscosity, and h half-height of the channel). Not surprisingly, if

the spectra are scaled by the inner unit, they all show very good

agreement in the near-wall region (figure 1a; here λx is the stream-

wise wavelength). As the Reynolds number increases, the energetic

part of the spectra exhibits a linear growth with y along the ridge

λx ≃ 100y (y is the wall-normal distance from the wall), indicat-

ing the emergence of a large number of self-similar streaky motions

in the logarithmic region found in Hwang (2015). However, even

in the near-wall region, it is important to note that the good inner

scaling of the spectra appears only for λ+
x . O(103): the spectra

for λ+
x & O(104) in the region of y+ . 50 become increasingly

more energetic and longer on increasing the Reynolds number (the

blue-boxed region in figure 1a), indicating the growing near-wall in-

fluence of the energy-containing flow structures in the logarithmic

and outer regions at higher Reynolds numbers. This feature is also

confirmed in the outer-scaled spectra (figure 1b). The outer-scaled

spectra appear to scale very well in the outer unit for λx > 1h and

y > 0.2 ∼ 0.3h, the region directly related to large-scale motions

(LSMs) and VLSMs. While the spectra extend to the wall mainly

along λx ≃ 100y on increasing the Reynolds number, the part of the

spectra at λx ≃ 10 ∼ 20h also appears to extend to the wall with

the increase of the Reynolds number (the blue-boxed region in fig-

ure 1b), confirming that the near-wall part (i.e. footprint) of the

large-scale outer structure does not scale in the outer unit and that it

extends more to the wall on increasing the Reynolds number.

Given the wall-normal location of the near-wall part of the
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Figure 2. Premultiplied streamwise wavenumber spectra of the

streamwise velocity in λx/h− y+ plane. The labels of each con-

tour are given to be uniformly spaced from zero for comparison of

the wall-normal structure of the spectra in the region highlighted

with the blue box. Here, the dashed, solid and shaded contours are

respectively from Reτ = 934, Reτ = 2003 (Hoyas & Jiménez, 2006)

and Reτ = 5186 (Lee & Moser, 2015).

large-scale outer structure, the only relevant length scale for it to

be properly scaled would be the inner length scale. We therefore

replot the spectra given in Fig. 1 in the λx/h − y+ plane in fig-

ure 2. If each of the spectra at three different Reynolds numbers

is properly normalized, the wall-normal structure of the streamwise

velocity spectra at λx ≃ 10 ∼ 20h exhibits good scaling with the

inner unit in the near-wall region (the blue-boxed region in figure

2), indicating the near-wall part of the large-scale outer structures

is affected by viscous effect of the wall. It is important to mention

that, from the scaling viewpoint, this observation indicates that the

wall-normal location of the outer peak should be an outcome of an

asymptotic matching between two functions, one of which scales in

the inner unit in the near-wall region (fig 2) and the other scales in

the outer unit in the outer region (fig 1b), resulting in the Reynolds-

number-dependent behavior of the outer peak.

This intriguing feature of the large-scale outer structure evi-

dently reminds us of the concept of ‘mesolayer’ originally intro-

duced for mean-momentum balance (e.g. Wei et al., 2005). It also

leads us to several important related questions: What is the origin of

the inner-scaling nature of the large-scale outer structure?; Is it also

observed in the self-similar energy-containing motions in the log-

arithmic region (Townsend, 1976; Perry & Chong, 1982; Hwang,

2015)? What is its consequence to the classical theory on the coher-

ent structures (Townsend, 1976)? To answer these questions, here

we carefully reinspect the linear theory used in our previous studies

(Cossu et al., 2009; Pujals et al., 2009; Hwang & Cossu, 2010a,b;

Willis et al., 2010), where optimal transient growth of small organ-

ised perturbations is calculated using the linearized Navier-Stokes

equation with an appropriate eddy viscosity (Reynolds & Hussain,

1972). We subsequently show that the most amplified mode in the

linear theory exhibits the qualitatively same behavior with the spec-

tra of DNS (figures 1 and 2). Generalization of this observation is

then made to the modes emerging in the form of Townsend’s at-

tached eddies (Hwang & Cossu, 2010b), revealing that the presence

of such an inner-scaling region of each attached eddy should lead to

theoretically ‘broken’ self-similarity of the log-layer motions in the

region close to the wall. The origin of this behavior is then studied

by carefully examining the linearized Navier-Stokes equation, and

we will see that this feature is essentially due to inhomogeneous

turbulent dissipation in the wall-normal direction.

LINEAR MODEL
Equation for a small-amplitude motion of interest

We consider a fluid flow over a turbulent channel in which the

streamwise, wall-normal and spanwise directions are denoted by x,

y, and z, respectively. The two walls are set to be located at y= 0 and

y = 2h, respectively. Density and kinematic viscosity of the fluid

are denoted by ρ and ν . The velocity field in the channel is denoted

by u = (u,v,w) where u, v and w indicate the streamwise, wall-

normal and spanwise velocities, respectively. Following Reynolds

& Hussain (1972), the velocity field u may be decomposed into

u = U+u
′+ ũ, (1)

where U = (U(y),0,0) is the mean velocity, u
′ turbulent velocity

fluctuation, and ũ is the ‘organized wave’ of interest. If the ampli-

tude of ũ is ‘small’ and an appropriate closure is provided for de-

scribing the role of u
′ in evolution of ũ, the equation for ũ is given

by

∇ · ũ = 0, (2a)

∂ ũ

∂ t
+(ũ ·∇)U+(U ·∇)ũ =−

1

ρ
∇ p̃+∇ ·

[

(ν +νt)
(

∇ũ+∇ũ
T
)]

,

(2b)

with the initial condition

ũ(x,y,z, t = 0) = ũ0(x,y,z). (2c)

Here, p̃ is the related pressure and νt is the eddy viscosity, for which

the semi-empirical expression by Cess (1958) is adopted (e.g. Butler

& Farrell, 1993; del Álamo & Jiménez, 2006; Pujals et al., 2009;

Hwang & Cossu, 2010b):

νt(η) =
ν
2

{

1+
κ2Re2

τ
9

(1−η2)2(1+2η2)2 × (3)

{1−exp[(|η|−1)Reτ/A]}2
}1/2

−
ν
2
,

where η = (y− 1)/h, κ = 0.426 and A = 25.4 from del Álamo &

Jiménez (2006). We note that the eddy viscosity has a direct rela-

tion with the mean velocity profile U(y) through the mixing length

model: i.e. νtdU/dy =−u′v′.

Optimal transient growth
Now, we consider a plane Fourier mode, such that:

ũ(x,y,z, t) = û(y, t)ei(αx+β z), where α and β are the streamwise

and spanwise wavenumbers, respectively (i.e. α = 2π/λx and

β = 2π/λz). Since the linearized system for each Fourier mode

been found to be stable in all the canonical wall-bounded shear

flows considered so far (Cossu et al., 2009; Pujals et al., 2009;

Hwang & Cossu, 2010a,b; Willis et al., 2010), the amplification

mechanism by A is examined by calculating the so-called optimal

transient growth of initial condition. For a given set of α and β , the

related optimization problem for initial condition is defined by

Gmax = max
t

max
û0

‖û(t)‖2

‖û0‖2
. (4)

The optimization problem is solved using the standard method

given e.g. in Schmid & Henningson (2001). The discretization
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in the wall-normal direction is performed using a Chebyshev col-

location method (Weideman & Reddy, 2000) with up to Ny = 1024

to manage the highest Reynolds number considered here (Reτ =
40000). Since an extensive discussion on Gmax was made in Pu-

jals et al. (2009) and Hwang & Cossu (2010b), the focus on the

present study will be given to the wall-normal structure of ûopt at

t = tmax, which represents the most amplified flow structure by (2),

in relation to its similarity to the observation made with the spectra

(figures 1 and 2).

Relevance and limitations
Before exploiting the result from the present linear approach,

here we address the physical relevance and limitations of the present

approach. The linear theory in the present study has been found

to be useful for prediction of the generation of the long streaky

structures emerging in the near-wall, logarithmic and outer regions

(Cossu et al., 2009; Pujals et al., 2009; Hwang & Cossu, 2010a,b;

Willis et al., 2010). Large amplification of û appears typically for

α ≪ β , and the resulting velocity field ûopt is dominated by a

streaky motion of the streamwise velocity. However, the linear the-

ory does not appear to be fully relevant if the wall-normal and span-

wise velocities are concerned. In real flow, the main flow structures

of these velocity components are typically much shorter than the

long streaky structure of the streamwise velocity: the streamwise

extent of the flow structure with the intense cross-streamwise veloc-

ity fluctuations is only two or three times larger than its spanwise

width (λx ≃ 2 ∼ 3λz), whereas the streaky structure of the stream-

wise velocity appears with ten times larger than that (λx ≃ 10λz)

(Hwang & Cossu, 2010c; Hwang, 2015). Given the fact that the lin-

ear amplification is large only for α ≪ β , it is questionable whether

the linear theory would be fully relevant for such a short wall-

normal and spanwise velocity structure. Indeed, it has recently been

shown that the length scale of the cross-streamwise velocity compo-

nents is rather well predicted by instability of the amplified streaky

structure, which incorporates some roles of the neglected nonlinear-

ity (Schoppa & Hussain, 2002; Park et al., 2011; Alizard, 2015). A

recent numerical experiment further confirmed this by showing that

the artificial suppression of the instability of the amplified streak

significantly inhibits the generation of the flow structure with the

cross-streamwise velocity components (Hwang & Bengana, 2016).

Due to this inherent limitation of the present linear approach for de-

scription of the wall-normal and spanwise velocities, the primary

focus of this paper will be given to the streamwise velocity associ-

ated with the linearly amplified long streak.

RESULTS AND DISCUSSION
Now, consider the spanwise wavelength λz between λ+

z = 100

and λz = 1.5h. For each λz, the streamwise extent of the streaky

motions is chosen as

λx ≃ 10λz, (5)

from Hwang (2015) where the streaky structures in the logarith-

mic region appear with the scaling given by (5). We note that, if

λ+
z = 100, (5) yields λ+

x = 1000, the streamwise length scale of

the well-known near-wall streaks. On the other hand, if λz = 1.5h,

it gives λx = 15h, the streamwise length scale of the VLSM (the

outer streaky structure). At each of the intermediate spanwise length

scales λz between λ+
z = 100 and λz = 1.5h, (5) gives the streamwise

length scale of the self-similar streaky motions in the logarithmic re-

gion. For a further discussion on (5), the reader may refer to Hwang

(2015).
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Figure 3. The wall-normal profile of the normalized stream-

wise velocity of ûopt (λx = 15h and λz = 1.5h): (a)

|ûopt(y/h)|; (b) |ûopt(y
+)|/|[dûopt/dy+]y=0|. Here, Reτ =

1000,2000,5000,10000,20000,40000. The dashed line indicates

|ûopt(y
+)|= 1/0.44ln(y+)+5.2.

Figure 4. Wall-normal peak location of the streamwise velocity

of the optimal response at t = tmax with respect to Reτ . Here, the

solid lines in (a) and (b) respectively indicate y/h = cRe−0.1019
τ and

y+ = cRe0.8981
τ where c is a fitting constant.

Largest attached eddy: very-large-scale motion
We consider λz = 1.5h and λx = 15h from (5), which would

represent the VLSM (the outer streaky structure) (Hwang & Cossu,

2010c; Hwang, 2015). Fig. 3 shows the normalized ûopt(y) at

Reτ = 1000,2000,5000,10000,20000,40000. If the ûopt (y) are

plotted in the outer coordinate (figure 3a), they reveal good ac-

cordance to one another in the outer region (y/h & 0.2 ∼ 0.3). In

the region close to the wall (y/h . 10−2), such an agreement does

not appear: the normalized ûopt rather gradually extends to the

wall on increasing the Reynolds number, similarly to the spectra

at λx ≃ 10 ∼ 20h (figure 1a). Now, we plot ûopt (y) in the inner co-

ordinate after normalizing them with the shear rate at the wall, i.e.

dûopt/dy+|y=0 (figure 3b). The rescaled ûopt(y) show very good

scaling in the inner coordinate and can reach the logarithmic region

at very high Reynolds numbers, consistent with the spectra in figure

2. Fig. 3 now clearly suggests that ûopt (y) is a function of only

y/h in the outer region (fig 3a), while ûopt(y)/(dûopt/dy+|y=0) is

a function of only y+ in the near-wall region (fig 3b). It is evident

that this feature would lead the peak location of ûopt(y) (denoted

by ymax) to be placed in the overlap region with a scaling behavior

involving both inner and outer length scales. Such a scaling nature

of ûopt(y) is clearly an analogue to the construction of the mean ve-

locity (e.g. Millikan, 1938; Tennekes & Lumley, 1967), and, inter-

estingly, the logarithmic behavior also appears to emerge in ûopt (y)
for the same reason.

Fig. 4 reports the peak location ymax of ûopt (y) with the

Reynolds number. As expected from Fig. 3, the peak location ymax

reveals the Reynolds-number-dependent behavior, and the best fit

of the dependence of ymax on Reτ is found as y/h ∼ Re−0.1019
τ . The

scaling of ymax is not very close to y/h ∼ Re−0.5
τ observed in bound-

ary layer and pipe flows (Mathis et al., 2009; Vallikivi et al., 2015),

but this is not so surprising given the number of approximations
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Figure 5. The wall-normal profile of the normalized

streamwise velocity of ûopt (λx = 6h and λz = 0.6h):

(a) |ûopt(y/h)|; (b) |ûopt (y
+)|/|[dûopt/dy+]y=0|. Here,

Reτ = 1000,2000,5000,10000,20000,40000. The dashed

line indicates |ûopt(y
+)|= 1/0.15ln(y+)−4.5.
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Figure 6. Normalized streamwise velocity profile of the optimal

response at t = tmax: (a) λ+
x = 1000 and λ+

z = 100; (b) λ+
x = 3000

and λ+
z = 300. Here, Reτ = 1000,2000,5000,10000,20000,40000.

made for the present approach (e.g. linearisation, highly simplified

eddy viscosity, not fully physical initial condition, etc). However, it

is important to note that the dependence of ymax on Reτ appears to

be qualitatively the same with the experimental observations, and

this is quite encouraging as it is an outcome of the inner-scaling

nature observed in Fig. 3 (a).

Attached eddies in the logarithmic region
We now extend the present investigation to the logarithmic re-

gion by considering λz between λ+
z = 100 and λz = 1.5h, as a

spanwise length scale in this range would describe each of the self-

similar streaky structures in the logarithmic region (Hwang, 2015;

Hwang & Bengana, 2016). We first choose λz to scale in the outer

unit. Fig. 5 shows the wall-normal profiles of ûopt(y) at λz = 0.6h

with λx = 6h for Reτ = 1000,2000,5000,10000,20000,40000. Ex-

actly the same behavior is observed as in Fig. 3. When plotted in the

outer coordinate, the normalized ûopt (y) at the different Reynolds

numbers agree well with one another relatively in the outer region

(figure 5a). On the other hand, when plotted in the inner coordi-

nate, they collapse well into a single curve in the region relatively

close to the wall (figure 5b). The logarithmic dependence of ûopt (y)
is also seen, although the wall-normal size of the related region is

much smaller than that with λz = 1.5h (figure 3) due to the smaller

λz(= 0.6h).

Now, we choose λz to scale in the inner unit with the Reynolds

number. In this case, the scaling behavior of ûopt (y) becomes very

different from that in figures 3 and 5. Fig. 6 shows the normalized

ûopt(y) in the inner coordinate for λ+
z = 100 and λ+

z = 300 at all

the Reynolds numbers considered. In this case, all the profiles of

ûopt(y) are almost identical in the inner coordinate. This suggests

that the scaling of the outer part of ûopt(y) follows the choice of the

scaling of λz (i.e. the size of the structure of interest). However,
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Figure 7. Normalized streamwise velocity profile of the optimal

response at t = tmax (Reτ = 10000) in (a) the y/λz and (b) y/ymax

coordinate. Here, λz/h = 0.3,0.6,0.9.
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Figure 8. Effect of the eddy viscosity on the normalized stream-

wise velocity profile of the optimal response at t = tmax (λz = 1.5h,

λx = 15h, and Reτ = 10000): (a) the original eddy viscosity; (b) a

constant eddy viscosity with νt = maxy νt(y) where νt(y) is given

in (3).

the inner part of ûopt (y) always remain to scale in the inner unit, no

matter how λz is chosen.

In our previous study (Hwang & Cossu, 2010b), it was shown

that ûopt(y) for a given λz between λ+
z = 100 and λz = 1.5h is ap-

proximately self-similar with respect to λz (or ymax) as in the at-

tached eddy hypothesis of Townsend (1976). However, more care-

ful observation of ûopt (y) with figures 5 and 6 now clearly shows

that the self-similar nature of ûopt(y) is valid only in the approxi-

mate sense, as the inner part of ûopt (y) does not appear to be af-

fected by the chosen λz. In Fig. 7 (a), ûopt for λz/h = 0.3,0.6,0.9
at Reτ = 10000 are in the y/λz coordinate, and only the outer part

of ûopt seems to be self-similar with respect to λz in this coordi-

nate. Scaling with the y/ymax coordinate (from λz ∼ y), shown in

Fig. 7 (b), more precisely confirms that only the outer part of ûopt

scales with ymax(∼ λz), and the near-wall part of ûopt (y) does not

show such a self-similarity. Instead, as λz is increased, ûopt extends

more to the wall, indicating that ûopt (y) would experience incom-

plete self-similarity due to the inner-scaling nature.

The origin of the inner-scaling nature
The observations of ûopt (y) so far appear to be consistent with

the spectra in figs 1 and 2, so the naturally following question is

what would be the origin of this behavior. A careful examination of

the linear model reveals that the origin of the inner-scaling nature of

ûopt (y) at least in this case is the eddy viscosity νt in (3). Indeed, as

shown in Fig. 8, setting the eddy viscosity ν to be constant by νt =
maxy νt(y) inhibits the highly penetrating behavior to the near-wall
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Figure 9. Dependence on the normalized streamwise velocity pro-

file of the optimal response at t = tmax on the Reynolds num-

ber with a constant eddy viscosity νt = maxy νt(y). Here, Reτ =

1000,2000,5000,10000,20000,40000. Note that all the profiles

considered are almost identical.

region in ûopt(y) with the original νt . In particular, the peak wall-

normal location ymax of ûopt(y) is changed from the logarithmic

region (ymax/h = 0.055) to the outer region (ymax = 0.4h). More

importantly, the constant νt does not allow ûopt(y) to depend on

the Reynolds number, as shown in Fig. 9. This suggests that the

spatially varying original νt(y) in (3) plays a critical role in the large

amplification of ûopt (y) in the near-wall and logarithmic regions as

well as the enforcement of the inner-scaling nature of ûopt (y) in the

region close to the wall.

In this respect, it is interesting to take a look at the key feature

of νt in (3), which originate from its definition given by the mixing

length model: i.e.

νt
dU

dy
=−u′v′. (6)

In the logarithmic region, the Reynolds stress is constant and

dU/dy ∼ 1/y, thus the considered νt should grow linearly with y.

What is important here is that this growing behavior of νt in the log-

arithmic region must be generic in any turbulence models for wall-

bounded shear flows. In the near-wall region, both of the integral

and dissipation length scales are δν , indicating that the dissipation

mechanism is dominated by molecular viscosity due to the wall. On

the other hand, in the outer region, the integral length scale (h) and

the dissipation length scale (ν3h/u3
τ ) are separated with the extent

measured by their ratio given by Re
3/4
τ . Therefore, in the outer re-

gion, a vigorous turbulent dissipation through the energy cascade is

expected, resulting in large νt from the modelling viewpoint. The

only way to incorporate to manage the large disparity between the

dissipation mechanisms of the near-wall and outer regions would be

by having a smoothly growing νt with y, as in (6).

It is important to note that this feature of νt plays a critical

role in determining the wall-normal structure of ûopt (y) in the lin-

ear theory. In the near-wall region and relatively lower part of the

logarithmic region, the given perturbation at t = 0 would experi-

ence relatively small νt , yielding relatively large ûopt (y) at t = tmax,

whereas in the relatively upper part of the logarithmic region and

outer region, it would go through large νt , resulting in relatively

small ûopt(y). This simple mechanism explains why ûopt (y) with

νt in (3) is larger than that with the constant νt(= maxy νt(y)) in

the region close to the wall, while being smaller in the region far

from the wall. It is also presumable that such a nature of νt in (3)

intricately linked to the inner-scaling behavior of ûopt (y) as demon-

strated in Fig. 9. The crucial role of νt in the wall-normal struc-

ture of ûopt (y) suggests that the inner-scaling nature of ûopt (y) of

the energy-containing motions would probably be an outcome of a

scale interaction, because the wall-normal structure of νt in (3) es-

sentially reflects the inhomogeneous turbulent dissipation affected

by the multiple scales at different wall-normal locations. In this

sense, it would be appropriate to interpret that νt in (3) describes a

‘minimal’ form of scale interaction.

CONCLUSIONS

The inspection of the spectra of the streamwise velocity and

the linear theory in § so far has suggested that the near-wall stream-

wise velocity of the energy-containing motions in the logarithmic

and outer regions probably scales in the inner units, while their re-

spective outer part scales in the given length scale of interest. As

the inner-scaling nature of a certain flow feature should indicate the

viscous wall effect, this observation sounds quite similar to the con-

cept of ‘mesolayer’ introduced for the mean momentum balance

(Long & Chen, 1981; Afzal, 1982, 1984; Sreenivasan & Sahay,

1997; Wei et al., 2005). The linear model analysis indicates that

the inner-scale nature of each motion would be intricately linked

with the Reynolds-number-dependent behavior of the outer peak

location in the streamwise wavenumber spectra of the streamwise

velocity (Mathis et al., 2009; Vallikivi et al., 2015) as well as the

near-wall penetration of large-scale outer structures. Furthermore,

it would lead to ‘incomplete’ or ‘partially broken’ self-similarity

of the energy-containing motions in the logarithmic region given in

the form of Townsend’s attached eddies. It should be noted, how-

ever, that this is not necessarily inconsistent with the attached eddy

hypothesis of Townsend (1976) who used the self-similarity of the

energy-containing motions in the logarithmic region as the core of

his original theory. In fact, the statistical structure of each attached

eddy introduced by Townsend (1976) was built at the ‘inviscid’ limit

by neglecting the viscous effect from the wall. On the other hand,

the incomplete self-similarity in the present study appears essen-

tially because the viscous wall effect (i.e. the inner-scaling nature)

is incorporated in the structure of the attached eddies. In this re-

spect, the incomplete self-similarity should rather be viewed as a

consequence of viscous correction of the original description of

Townsend (1976).

Finally, it is worth highlighting that the simple observation

made here would enable one to consistently describe several im-

portant observations within a single framework: i.e. the viscous

effect in the mean momentum balance (Sreenivasan & Sahay, 1997;

Wei et al., 2005; Klewicki et al., 2009; Klewicki, 2013), the near-

wall penetration of the outer structures via their footprint result-

ing the inner-outer interaction (Hutchins & Marusic, 2007; Mathis

et al., 2009; Agostini & Leschziner, 2014, 2016), and the Reynolds-

number-dependent behavior of the outer peak in the streamwise

wavenumber spectra of the streamwise velocity (Mathis et al., 2009;

Vallikivi et al., 2015), a viscous correction of Townsend’s attached

eddy hypothesis and the resulting ‘incomplete’ self-similarity in the

region close to the wall (present study), and the collective genera-

tion of turbulent skin friction by all the energy-containing motions

(Hwang, 2013; de Giovanetti et al., 2016). In this respect, further

evidence particularly on other velocity components and Reynolds

stress would need to be presented in the future work.
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