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Abstract
A dynamic model for Large-Eddy Simulation (LES)

suitable for discontinuous finite element methods is vali-
dated in the context of free shear flows. The main feature
of the model is a turbulence sensor built from the evalua-
tion of the modal energy spectrum in each element of the
discretization. The evaluation of the sharpness of the en-
ergy decay in each element allows to locally identify the
under-resolution and adapt accordingly the intensity of the
sub-grid dissipation. The present approach is tested on the
LES of the temporally developing mixing layer at Re = 500
for assessing the proposed model to represent accurately the
transition and the coherent vortices. It is found that the
model leads to an accurate description of transitional vor-
tical flows at coarse resolutions. It is also found to pro-
vide accurate results on distorted grids while maintaining
the computations robust.

Introduction
Discontinuous finite element methods (DFEM) such

as the Discontinuous Galerkin (DG) or Spectral Difference
(SD) methods (see Cockburn et al., 2000; Kopriva & Ko-
lias, 1996; Liu et al., 2006; Wang et al., 2007) show a
strong potential for the simulation of turbulence on com-
plex geometries by the means of DNS or LES due to their
high-orders of accuracy, the ability to handle unstructured
meshes, curved elements and the compactness of the stencil
which allows for a good parallel efficiency.

DFEM naturally introduce a numerical dissipation
originating from the upwinding of the numerical flux com-
puted at the cell interfaces. The numerical dissipation
has been studied in the context of canonical turbulent
flows Chapelier et al. (2016b,a) and it has been found that
this dissipation alone is not sufficient to provide an accu-
rate description of high Reynolds turbulent flows on coarse
grids. Dissipative SGS models are therefore needed to com-
plement this numerical dissipation in order to obtain phys-
ically consistent results for high-Reynolds, under-resolved
turbulent flows computations.

The semi-local nature of DFEM approaches (a spectral
representation of the solution in each of the discretization
cell) offers many possibilities for turbulence modeling. In

particular, the modal decomposition of the signal in each
cell allows for evaluating local spectra which can be used
for various modeling approaches. For example, it allows for
an easy implementation of multi-scale LES models, such as
the VMS introduced by Hughes et al. (2001). In the present
work, a new dynamic LES model is proposed by blending
ingredients from existing dynamic turbulence models and
modal shock capturing techniques based on the polynomial
scale decomposition of the signal. In particular, Persson &
Peraire (2006) and Klöckner et al. (2011) proposed shock
sensors built on the modal decay of the density component
allowing for the identification of cells in which a shock is
present. In Chapelier & Lodato (2016), this idea has been
extended for the detection of under-resolved regions for the
LES of turbulent flows. This new approach has been found
to provide an accurate, robust and easy to implement LES
modeling strategy for DFEM, in the context of canonical
turbulence. In the present work, this model is further as-
sessed in the context of free shear flows. A temporal mix-
ing layer configuration is considered and the DFEM results
compared to state of the art LES computations. The influ-
ence of the order of accuracy and grid distortion on the so-
lution quality is also assessed for this configuration.

1 Methodology
The SD method is considered for the resolution of

the compressible Navier-Stokes equations on unstructured
meshes. All the details for the implementation can be found
in the work of Lodato et al. (2013). This method features
an arbitrary high-order spatial discretization with upwind
fluxes (based on the Roe scheme) for the inviscid terms and
centered fluxes for the viscous terms. The approach is com-
pact, handles unstructured and curved mesh elements and is
scalable for thousands of computational cores in the case of
parallel computations.

In Chapelier & Lodato (2016), a new dynamic ap-
proach for LES—called SEDM—that accounts for the em-
bedded numerical dissipation of the SD scheme has been
developed and validated in the context of fundamental tur-
bulence test cases. The main feature of this dynamic model
is its ability to detect under-resolution at the cell level and
adapt the intensity of the sub-grid dissipation accordingly.
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The development of the SEDM follows three different steps.
The first step consists in building a turbulence sensor able to
discriminate between (well-resolved) laminar and (under-
resolved) turbulent regions. This sensor is based on the
evaluation of the spectral energy decay which provides a
powerful indicator to detect the presence of well- or under-
resolved turbulence. DFEM allow for a cell-local evalua-
tion of the energy decay which leads to the validity of such
a sensor for unstructured meshes. The one-dimensional en-
ergy spectrum in each cell can be obtained by computing the
modes of the velocity components corresponding to a hier-
archical polynomial basis. In this case, the energy spectra
read:

E j(k) = [Vklu(ξl)]
2 , (1)

where u is a component of the velocity vector, Vkl = Lk(ξl)
is the Vandermonde matrix, Lk the basis of Legendre poly-
nomials and k the number of the Legendre mode. The
modal energy decay can then be evaluated, for example,
by assuming that the energy spectrum follows a power law
E j(k) ∝ k−σ j , where σ j is the power decay of the spectrum
in the cell j. The values of σ j can be computed using a
least-square fit. High values of σ j characterize a fast decay
of energy in the cell, which typically corresponds to well-
resolved or laminar regions in which the small-scale energy
is low. Low values of σ j correspond to under-resolved re-
gions with highly-energetic small-scales and the possible
presence of high-frequency numerical oscillations.

The next step consists in defining a function f (σ j)
which lowers the intensity of the sub-grid stresses in well-
resolved regions. The following expression guarantees a
smooth transition of the sub-grid dissipation intensity be-
tween the well- and under-resolved regions of the flow:

f (σ j) =


0 if σ j > σt +2κ,

1 if σ j < σt,
1
2 +

1
2 sin

(
π

σt+κ−σ j
2κ

)
elsewhere,

(2)

where σt is the value of σ j defining the limit of under-
resolution and κ is a parameter defining the sharpness of
the function f .

The last step consists in defining the expression of the
eddy viscosity. A mean eddy viscosity is first built in each
cell:

ν
j

t =C2
SEDM f (σ j)∆ j

√
k j, j = 1, . . . ,Nel, (3)

where k j is the mean turbulent kinetic energy in the ele-
ment j and ∆ j = ∆

j
x/(p+ 1) the cutoff length. A contin-

uous spatial variation of νt is recovered by computing the
mean values of the viscosity at the element vertices. The
eddy viscosity is therefore assumed to be piece-wise linear
within each element. The parameters CSEDM = 0.23 and
σt = 1.6 have been calibrated from a priori studies of a
DNS of isotropic turbulence (Chapelier & Lodato, 2016).
The value of σt = 1.6 is not expected to vary because of the
universality of scales located in the inertial range which, in
turn, guarantee a constant power decay at high Reynolds
numbers. The parameter CSEDM = 0.23 is defined so that
the maximum level of sub-grid dissipation is sufficient in a

very high Reynolds number configuration. The SEDM ap-
proach will ensure that the sub-grid dissipation is lowered
in well-resolved, transitional or laminar regions of the flow.
The parameter κ is set to 0.3 for the following tests, as pro-
posed in the work of Chapelier & Lodato (2016) in which a
sensitivity study of this parameter was performed.

2 Mixing Layer computations
The accuracy of the SEDM approach is assessed for

a temporal mixing layer flow configuration. The flow
setup corresponds to the configuration considered by Vre-
man et al. (1997). The computational domain Ω = [0,L]×
[−L/2,L/2]× [0,L] is cubic with periodic boundary condi-
tions in the longitudinal and transversal directions. L is the
domain length corresponding to about eight times the dom-
inant wavelength. Wall-slip conditions are imposed at the
boundaries in the shear-layer direction. The shear layer is
defined by imposing the following initial velocity profile:

u =
(U1 −U2)

2
tanh(y), v = 0, w = 0, (4)

where U1 and U2 are the upper and lower stream veloci-
ties, respectively. The component u is perturbed by a ran-
dom noise of amplitude 0.05 in order to trigger the tran-
sition to turbulence. The Reynolds number based on the
upper stream velocity and initial vorticity thickness is set
to 500. The upper stream Mach number is set to 0.2. In
the present study, the accuracy of the SEDM approach is
compared to the state of the art LES computation of Vre-
man et al. (1997). This reference computation features a
1203 grid and is explicitly filtered using a filter length cor-
responding to a 603 grid in order to remove the influence
of the numerical errors related to the discretization; the
dynamic model of Germano et al. (1991) was adopted to
model the sub-grid scale stresses. The SEDM computation
considered using the SD method features an eighth order
of accuracy (equivalent to a polynomial degree p = 7) and
83 elements leading to a total of 643 degrees of freedom
(DoF). It is interesting to note that, for this particular SD
discretization, the computation without sub-grid model be-
comes unstable during the mixing layer growth. The num-
ber of DoF of the SD discretization is reduced by a fac-
tor 7 when compared to the reference computation of Vre-
man et al. due to the absence of explicit filtering. As seen
from Figures 1,2 and 3, the SEDM computation compares
very well with the reference computation in terms of the
evolution of the momentum thickness and the longitudinal
Reynolds stresses at two different times. Figures 4,5 and 6,
which present the Q criterion iso-surfaces at three different
times, show well-defined vortical structures with the pres-
ence of small-scale turbulence during the late stages of the
computation. In terms of computational costs, it is expected
that the current methodology is more efficient compared to
the reference, explicitly filtered, Dynamic model computa-
tion. First, for the reference computation of Vreman et al.,
the explicit filter of the solution reduces the actual effec-
tiveness of the computational grid, as only 603 DoFs be-
come relevant over the 1203 DoFs grid. Although we can
argue that this explicit filter removes the numerical errors,
the SEDM computation keeps all DoFs effective, therefore
inducing a consequent reduction in terms of computational
cost. Second, the Dynamic model involves a number of test
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filtering and averaging to determine the dynamic parame-
ter, while the SEDM approach has been shown to be almost
equivalent to the Smagorinsky model in terms of computa-
tional cost (Chapelier & Lodato, 2016).

Sixth order accurate SD computations are considered
as well to explore the influence of the order of accuracy
on the quality of the solution. The sixth order discretiza-
tion features a polynomial degree p = 5 and 163 mesh ele-
ments leading to the definition of 963 degrees of freedom.
The sixth order computation is run using the SEDM ap-
proach. The longitudinal Reynolds stresses are plotted at
times t = 160 and t = 200 for the 6th order computations
in Figures 7 and 8, and the results are compared to the
8th order SEDM computation and the reference computa-
tion by Vreman et al.. The sixth order SEDM computation
shows a good agreement with the reference results of Vre-
man, and the profiles are also close to the 8th order SEDM
computation. The interest of increasing the order of accu-
racy is clearly demonstrated in these pictures 7 and 8, as the
8th order SEDM computation shows a lower number of de-
grees of freedom than the 6th order counterpart for similar
results.

The last computations involve comparisons between
regular and distorted meshes. The sixth order regular mesh
is taken as reference and the position of the element vertices
randomly moved in all directions by a length 0.2h where
h = 120/16 is the element size for the regular mesh. The
resulting mesh is shown in Figure 9. A sixth order SEDM
computation is run using this mesh and the results com-
pared to the regular mesh computation. Figures 10 and 11
show the longitudinal Reynolds stresses at times t = 160
and t = 200 for the computation on the regular and dis-
torted grids. At t = 160, there is almost no difference be-
tween the Reynolds stresses on the regular and distorted
grid. At t = 200, the distorted grid computation leads to
a slight overestimate of the turbulent energy at the center
of the computational domain. However, the overall trend is
similar for both computations, which shows that the present
methodology is robust for computations on distorted grids.

Conclusion
A new dynamic LES model suitable for DFEM has

been validated in the context of free shear flows. Its main
feature is a local turbulence sensor built from the evaluation
of the decay of the modal energy in each of the discretiza-
tion elements. This approach has been applied successfully
for LES computations of the temporally developing mixing
layer using the SD method. The combination of a high-
order of accuracy with an accurate sub-grid model leads to
results which are similar to an explicitly filtered LES, which
is much more expensive in terms of resolution. In particu-
lar, the same quantitative agreement, for the mixing layer
growth rate and fluctuating velocity profiles, is found be-
tween a eighth order SEDM computation with 643 DoF and
the explicitly filtered LES with 1203 DoF. Different poly-
nomial orders have been assessed, and it is found that the
SEDM benefits from higher-orders as more degrees of free-
dom are necessary to obtain a quantitatively similar result
for lower orders. The approach has also been found to be
robust to grid distortion, as computations on randomly de-
formed meshes lead to the same qualitative agreement as
computations performed on regular Cartesian grids. Fu-
ture work will aim at assessing the present methodology for
more complex configurations and flow physics, such as sep-

arated or compressible flows.
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Figure 1. Evolution of the momentum thickness. 8th order
SEDM computation.

y/

R
1
1

­6 ­4 ­2 0 2 4 6
0

0.05

0.1

0.15 SEDM 8th order

Vreman Dynamic

Figure 2. Longitudinal Reynolds stresses at t = 160. 8th
order SEDM computation.
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Figure 3. Longitudinal Reynolds stresses at t = 200. 8th
order SEDM computation.

Figure 4. Q iso-surfaces at t=40 (8th order SEDM compu-
tation).

Figure 5. Q iso-surfaces at t=120 (8th order SEDM com-
putation).

Figure 6. Q iso-surfaces at t=200 (8th order SEDM com-
putation).
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Figure 7. Longitudinal Reynolds stresses at t = 160, 6th
order computations.
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Figure 8. Longitudinal Reynolds stresses at t = 200, 6th
order computations.

Figure 9. Sketch of the distorted mesh used for the sixth
order SEDM mixing layer computation.
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Figure 10. Longitudinal Reynolds stresses at t = 160, 6th
order computations, comparison between regular and dis-
torted mesh.
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Figure 11. Longitudinal Reynolds stresses at t = 200, 6th
order computations, comparison between regular and dis-
torted mesh.
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