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ABSTRACT 

The energy spectrum must be useful in describing the energy 
transfer not only in homogeneous isotropic turbulence but also in 
inhomogeneous turbulence. Instead of the energy spectrum in the 
wavenumber space, the energy density in the scale space can be 
defined using the velocity structure function or the two-point 
velocity correlation in the physical space. In this work, a new 
expression for the energy density in the scale space was 
introduced on the basis of the filtered two-point velocity 
correlation. In contrast to the previous expressions for the energy 
density, this expression is expected to be non-negative in 
homogeneous directions. The transport equation for the energy 
density was derived and direct numerical simulation data of 
homogenous isotropic turbulence and turbulent channel flow was 
used to evaluate the energy transport in the scale space. It was 
shown that the energy density is positive in all scales and the 
energy transfer from large to small scales was adequately 
observed for the turbulent energy. 

 
 

INTRODUCTION 
In order to better understand inhomogeneous turbulence, it 

must be useful to examine the energy transport not only in the 
physical space but also in the scale space corresponding to the 
wavenumber space for homogeneous isotropic turbulence. The 
second-order structure function 〈δui

2 〉 ( δui = ′ui (x + r)− ′ui (x) ) 
can be considered the scale energy (Hill, 2002; Marati et al., 
2004; Davidson, 2004). Its transport equation was investigated in 
detail in turbulent channel flow (Cimarelli et al., 2012, Cimarelli 
et al., 2016). However, the structure function is understood as part 
of the turbulent energy whose scale is equal to or less than 
r(= r ) ; it is not the energy density in the scale space. As the 
energy density, or the energy decomposition in the scale space, 
Davidson (2004) proposed 

 
(3 / 4)(∂ / ∂r)〈δu!

2 〉 . Paying attention 
to the two-point correlation Qii (r)(= 〈 ′ui (x) ′ui (x + r)〉)  Hamba 
(2015) also proposed an expression for the energy density. 
However, both expressions have a defect that the quantities are 
not necessarily non-negative. This property is not appropriate as 
the energy density. 

In this work, using the convolution integral we propose 
another expression for the energy density which is non-negative 
in homogeneous directions. We expect that this energy density is 
suitable in discussing the energy transfer in the scale space. We 
derive the transport equation for the energy density and examine 
the energy transfer in the scale space using the direct numerical 
simulation (DNS) data of homogeneous isotropic turbulence and 
channel flow. 
 
 
ENERGY DENSITY IN SCALE SPACE 

By analogy with the energy spectrum, we require the 
following properties as the energy density in the scale space 
(Davidson 2004) 

 
 E(r) ≥ 0  (1) 

 1
2
〈 ′ui

2 〉 = dr
0

∞

∫ E(r)  (2) 

 
Paying attention to the two-point correlation we previously 
proposed an energy density given by 
 

 E(r) = − 1
2
∂
∂r
Qii (r),  Qii (r) = 〈 ′ui (x) ′ui (x + r)〉  (3) 

 
(Hamba 2015). This expression satisfies the property (2), but not 
the property (1). E(r)  can be negative in the region where Qii (r)  
increases with r. This is also shown in the following expression 
 

 E(r) = dk
−∞

∞

∫ Q̂ii (k)
1
2
ksin(kr)  (4) 

 
where Q̂ii (k)(≥ 0)  is the Fourier transform of Qii(r) . Since 
sin(kr) appears in the integral in (4), E(r)  can be negative. 

In the present work we propose another expression for the 
energy density as follows 
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 E(r) = − 1
2
∂
∂r
Rii

> (r),  Rii
> (r) = dξ

−∞

∞

∫ Qii (ξ)G(ξ, r)  (5) 

where 

 G(ξ, r) = 1
2πr

exp − ξ2

2r2
⎛
⎝⎜

⎞
⎠⎟

 (6) 

 
Here, instead of Qii (r) , we use the filtered two-point correlation 
Rii

> (r) . The scale r does not represent the separation distance but 
the filter width. The new energy density satisfies the properties 
(1) and (2). Its nonnegativeness is shown by the following 
expression 
 

 E(r) = dk
−∞

∞

∫ Q̂ii (k)
1
2
k2r exp − 1

2
k2r2⎛

⎝⎜
⎞
⎠⎟  (7) 

 
Since the integrand in (7) is positive, E(r)  is always positive. 
Note that E(r)  can be expressed as (7) when ξ  appearing in (5) 
is taken in a homogeneous direction where the Fourier transform 
is defined. E(r)  may be negative when ξ  is in an 
inhomogeneous direction. 

The transport equation for E(r)  given by (5) can be written as 
 

 

D
Dt
E(r) = − 1

2
dξx−∞

∞

∫ GD(ξ, r)〈 ′uk (x) ′ui(x + ξ)〉 ∂
∂xk

Ui(x)

− 1
2

dξx−∞

∞

∫ GD(ξ, r)〈 ′uk (x + ξ) ′ui(x)〉
∂
∂xk

Ui(x + ξ)

− 1
2

dξx−∞

∞

∫ GD(ξ, r)ν ′ski (x) ′ski (x + ξ)

− ∂
∂xk

1
2

dξ
−∞

∞

∫ GD(ξ, r)〈 ′uk (x) ′ui(x) ′ui(x + ξ)〉

− ∂
∂xi

1
2

dξ
−∞

∞

∫ GD(ξ, r)〈 ′p (x) ′ui(x + ξ)+ ′p (x + ξ) ′ui(x)〉

+ ∂
∂xk

1
2

dξ
−∞

∞

∫ GD(ξ, r)ν〈 ′ski (x) ′ui(x + ξ)+ ′ski (x + ξ) ′ui(x)〉

+ ∂
∂r
1
2

dξ
−∞

∞

∫ G(ξ, r) ∂
∂ξk

〈( ′uk (x + ξ)− ′uk (x)) ′ui(x) ′ui(x + ξ)〉

+ ∂
∂r
1
2

dξ
−∞

∞

∫ G(ξ, r) ∂
∂ξk

[(Uk (x + ξ)−Uk(x))〈 ′ui(x) ′ui(x + ξ)〉]

(8) 

 
where GD(ξ, r) = −(∂ / ∂r)G(ξ, r)  and ′sij = ∂ ′ui / ∂x j + ∂ ′u j / ∂xi . 
The transport equation for E(r)  given by (3) can be obtained by 
replacing G(ξ, r)  by [δ(ξ − r)+ δ(ξ+ r)] / 2   in (8). By integrating 
each term from r = 0  to ∞ , (8) is reduced to the transport 
equation for the turbulent energy 〈 ′ui

2 〉 / 2 . On the right-hand side 
of (8) the first and second terms correspond to the energy 
production, the third term to the dissipation, the fourth term to the 
turbulent diffusion, the fifth term to the pressure diffusion, the 
sixth term to the viscous diffusion in the energy equation. These 
terms can be considered as the decomposition of the 
corresponding terms in the scale space. In contrast, the remaining 
seventh and eighth terms represent the energy transfer in the r 
space; these terms do not appear in the energy equation. They are 
useful in assessing the energy cascade among different scales. 

For homogeneous isotropic turbulence the above transport 
equation is rewritten as 

 

 ∂
∂t
E(r) = −εE (r)+ TE(r)  (10) 

 εE (r) =
1
2

dξx−∞

∞

∫ GD(ξ, r)ν ′ski (x) ′ski (x + ξ)  (11) 

TE(r) =
∂
∂r
1
2

dξ
−∞

∞

∫ G(ξ, r) ∂
∂ξk

〈( ′uk (x + ξ)− ′uk (x)) ′ui(x) ′ui(x + ξ)〉  

  (12) 
Only the dissipation term εE (r)  and the transfer term TE(r)  
remain. If the external force exists, the forcing term FE(r)  is 
added to the right-hand side of (10). 

 
 

HOMOGENEOUS ISOTROPIC TURBULENCE 
The transport equation given by (8) represents the energy 

transfer in the physical and scale spaces. We first examine the 
energy transfer in the scale space for homogeneous isotropic 
turbulence. We examine DNS data of homogeneous isotropic 
turbulence using 5123 grid points. We will show results of steady 
turbulence with external forcing at 2.5 < k < 4.5 . The Reynolds 
number Rλ  is 121. 

Figure 1 shows the energy density E(r)  given by (5) 
multiplied by r for log scale. The profile of rE(r) shows its 
maximum at  r ! 0.6 . The inertial range of the energy density 
should be proportional to r−1/3 ; the corresponding profile of 
rE(r)∝ r2/3  is also plotted in Fig. 1. In the small scale at 
r < 0.07 , the energy density decays faster than that for the 
inertial range, indicating the dissipation range. 

For the homogeneous isotropic turbulence, the transport 
equation for E(r)  is given by (10). Since external forcing is 
applied, the forcing term FE(r)  is added to the dissipation and 
transfer terms in (10). Figure 2 shows the three terms multiplied 
by r. The forcing term is positive at the large scale around 
r = 0.6  which corresponds to the peak of rE(r)  in Fig. 1. The 
transfer term is negative at the large scale and positive at the 
small scale, representing the energy transfer from large to small 
scales. In the dissipation range the positive transfer term and the 
negative dissipation term balance to each other. This situation is 
the same as the energy cascade from low to high wavenumbers. 

 
 

CHANNEL FLOW 
Next, we examine DNS data of channel flow to assess the 

energy density in inhomogeneous turbulence. The size of the 
computational domain is Lx × Ly × Lz = 2π × 2 × π . The number 
of grid points is Nx ×Ny ×Nz = 512 ×192 × 512 . The Reynolds 
number based on the friction velocity uτ  and the channel half 
width Ly / 2  is set to Reτ = 395 . Physical quantities are 
nondimensionalized using uτ  and Ly / 2 . The periodic boundary 
conditions are used in the streamwise and spanwise directions and 
no-slip conditions are imposed at the wall ( y = ±1 ). Statistics are 
obtained by averaging over x-z plane and over a time period of 
20. Although the Reynolds number is not very high, the data can 
be used to assess the expressions for the energy density. It 
remains as future work to analyze a flow at higher Reynolds 
number. 

In channel flow the energy density E(r)  depends on the 
coordinate y in the wall-normal direction. Here we will show 
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results at y+ = 144 . The energy density also depends on the 
direction of the vector r . In this work we focus on the spanwise 
direction r = rzez  and the wall normal direction r = −ryey . The 
spanwise direction is examined because negative velocity 
correlation is clearly seen and we can investigate the difference 
between the previous and new expressions for the energy density. 
The wall normal direction is also examined because the energy 
density was introduced to apply to inhomogeneous directions. 

First we show the result of the energy density for r = rzez . 
Figure 3 shows the two-point correlation Qii (y, rz ) / 2  as a 
function of rz  at y+ = 144 . Negative values are clearly seen 
around rz = 0.6 . This negative correlation is mainly caused by 
the streak structure of the streamwise velocity fluctuation ′ux . 
Figure 4 shows the energy density E(y,rz )  given by (3) as a 
function of rz . At the small scale rz < 0.6 , the energy density is 
positive. However, the value is negative at 0.6 < rz <1.2  because 
the correlation Qii (y, rz ) / 2 increases with rz  in this region as 
shown in Fig. 3. The previous energy density given by (3) is not 
always positive and needs to be improved. 

Figure 5 shows terms in the transport equation (8) for E(y,rz )  
given by (3) as functions of rz  at y+ = 144 . In Fig. 5 each term is 
multiplied by rz  as is the case of Fig. 2. At the scale rz < 0.4  the 
role of each term can be explained naturally as follows. The 
production term shows positive values at the large scale  rz ! 0.2 . 
The transfer term is negative at the large scale and positive at the 
small scale, representing the energy transfer from large to small 
scales. The dissipation term shows negative values at the small 
scale  rz ! 0.05 . This situation is similar to the case of 
homogeneous isotropic turbulence with external forcing shown in 
Fig. 2. In contrast, it is difficult to explain the energy transport at 
the scale rz > 0.4 . Each term fairly oscillates at this scale because 
long time average is required to obtain good statistics at the very 
large scale. Moreover, the production term shows negative values 
and the transfer term shows positive values. These profiles may 
indicate that a negative energy density is produced here and it is 
transferred to smaller scales, but its physical meaning is not clear. 

Figure 6 shows the energy density E(y,rz )  given by (5) as a 
function of rz . In contrast to Fig. 4, the profile shows positive 
values in the whole region because of the new definition of the 
energy density. Figure 7 shows terms in the transport equation (8) 
for E(y,rz )  given by (5) as functions of rz . Smooth profiles are 
obtained even at the very large scale. This is because the values 
of Qii(ξ)  in various scales affects the value of E(y,rz )  in (5) in 
contrast to (3). The production term correctly shows positive 
values in the whole region. The transfer term shows the energy 
cascade from large to small scales. This situation is similar to the 
case of homogeneous isotropic turbulence shown in Fig. 2. In 
addition, we can see small positive values of the transfer term at 
the very large scale rz > 0.7 . In contrast to Fig. 5, this positive 
value is expected to be physically meaningful; it suggests a slight 
backward energy cascade to the very large scale. 

Next we show the result of the energy density for r = −ryey . 
We consider the direction approaching the wall to examine the 
effect of the wall in detail. Figure 8 shows the two-point 
correlation Qii(y,ry ) / 2  as a function of ry  at y+ = 144 . The 
value ry = 0.36  where the correlation vanishes corresponds to the 
lower wall. The correlation Qii(y,ry ) / 2  monotonically decreases 
as ry  increases. It decreases rapidly at ry = 0.33  near the wall. 

Figure 9 shows the energy density E(y,ry )  given by (3) as a 
function of ry . At large scales it decreases as ry  increases. 
However, it rapidly increases at ry = 0.33  due to the rapid 
decrease of Qii(y,ry ) / 2  shown in Fig. 8. This rapid change of 
profile is because the energy density depends on the statistics at 
′y = y − ry  directly. 

This tendency is also seen in the transport equation. Figure 10 
shows terms in the transport equation (8) for E(y,ry )  given by 
(3) as functions of ry  at y+ = 144 . At ry < 0.3  the behavior of 
the production, dissipation, and transfer terms is similar to those 
in Fig. 5; the energy produced at the large scale is transferred to 
the small scale. However, at ry > 0.3  each term rapidly changes. 
Therefore, the energy density given by (3) is too sensitive to the 
field near the wall because E(r)  is directly affected by the 
correlation Qii(r)(= 〈 ′ui(x) ′ui(x + r)〉) .  

Figure 11 shows the energy density E(y,ry )  given by (5) as a 
function of ry . Since ry  is not the separation distance but the 
filter width appearing in the convolution integral in (5), it can be 
greater than 0.36. In contrast to Fig. 9, the profile smoothly 
decreases at the large scales because of the new definition of the 
energy density. It is similar to the profile of E(y,rz )  shown in 
Fig. 6. Figure 12 shows terms in the transport equation (8) for 
E(y,ry )  given by (5) as functions of ry . Smooth profiles are 
obtained in the whole region. The profiles are similar to the case 
of homogeneous isotropic turbulence shown in Fig. 2. In contrast 
to Fig. 7, the transfer term is negative at the very large scale; only 
the forward energy cascade is seen. These results show that the 
new definition of the energy density given by (5) is expected to 
be useful in investigating the energy transfer even in 
inhomogeneous directions. 

 
 

CONCLUSIONS 
A new expression for the energy density in the scale space 

was introduced on the basis of the filtered two-point velocity 
correlation. The transport equation for the energy density was 
evaluated using DNS data of homogeneous isotropic turbulence 
and channel flow. It was shown that the energy density takes 
positive values in the whole region and the energy transfer in the 
scale space can be examined appropriately even in 
inhomogeneous direction. 
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Figure 1. Profile of the energy density E(r)  given by (5) for 

homogeneous isotropic turbulence. 

 
Figure 2. Profiles of terms in the transport equation (8) for 

homogeneous isotropic turbulence 

 
Figure 3. Profile of the velocity correlation Qii (y, rz ) / 2  at 

y+ = 144  in channel flow. 

 
Figure 4. Profile of the energy density E(y,rz )  given by (3) at 

y+ = 144  in channel flow. 

 
Figure 5. Profiles of terms in the transport equation (8) for 

E(y,rz )  given by (3). 

 
Figure 6. Profile of the energy density E(y,rz )  given by (5) at 

y+ = 144  in channel flow. 

 
Figure 7. Profiles of terms in the transport equation (8) for 

E(y,rz )  given by (5). 
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Figure 8. Profile of the velocity correlation Qii(y,ry ) / 2  at 
y+ = 144  in channel flow. 
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Figure 9. Profile of the energy density E(y,ry )  given by (3) at 
y+ = 144  in channel flow. 
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Figure 10. Profiles of terms in the transport equation (8) for 

E(y,ry )  given by (3). 
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Figure 11. Profile of the energy density E(y,ry )  given by (5) at 
y+ = 144  in channel flow. 
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Figure 12. Profiles of terms in the transport equation (8) for 

E(y,ry )  given by (5). 

 


