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ABSTRACT 

This work aims to improve our understanding of the 
turbulent energy dissipation rate in the turbulent wake of a 
circular cylinder. Ten of the twelve velocity derivative 
terms which make up the energy dissipation rate are sim-
ultaneously obtained with a probe composed of four X-
wires. Measurements are made in the plane of mean shear 
at x/d = 10, 20 and 40, where x is the streamwise distance 
from the cylinder axis and d is the cylinder diameter, at a 
Reynolds number of 2.5´103 based on d and free-stream 
velocity. A phase-averaging technique is used to separate 
the coherent and remaining structures of the velocity 
derivatives and the energy dissipation rate , approximat-
ed by a surrogate based on the assumption of homogeneity 
in the transverse plane. It is found that the velocity deriva-
tives  and  play an important role in the 
interaction between large- and small- scale turbulent 
structures. The phase-averaged data indicate that energy 
dissipation occurs spatially mostly within the coherent 
spanwise vortices, rather than in the regions of turbulent 
mixing as described by in the widely accepted flow struc-
ture model (Hussain and Hayakawa, 1986, 1987). A re-
vised model is proposed to reflect the present finding on 
the spatial distribution of the energy dissipation rate. 

 

INTRODUCTION 
The mean turbulent energy dissipation rate, which is 

of essential importance in small-scale turbulence study 
(e.g. Sreenivasan and Antonia, 1997) is given by 
 

       (1) 

 
In Eq. (1), an overbar indicates a time-averaged quantity; 

 is the kinematic viscosity;   is the deriva-
tive of velocity fluctuation ui in the xj direction, where i 
and j = 1, 2, and 3 represent the streamwise, lateral and 
spanwise directions, respectively, and are used inter-
changeably with x, y and z (figure 1). 

Significant attention has been paid to the behaviour of 
 in various flows. Browne et al. (1987) measured nine 

(1-9 in Eq. (1)) of the twelve terms of  in a turbulent far 
wake (x/d = 420), and found that  based on the isotropy   
assumption may underestimate the total dissipation rate by 
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45%-80% across the wake. Both George and Hussein 
(1991) and Mi and Antonia (2010) suggest that  estimat-
ed based on the assumption of local axisymmetry is closer 
to the true value than that estimated based on the assump-
tion of local isotropy in most turbulent shear flows. 

 

 

Figure 1. (a) Experimental arrangement, coordinate sys-
tem, and definition sketch; (b) side view of the vorticity 
probe; (c) front view of the probe. 

 
 
Zhu and Antonia (1996a) studied the correlation be-

tween enstrophy and energy dissipation rate in a turbulent 
wake with a four X-wire probe in the same shape as the 
probe used in the present study, and proposed an assump-
tion of homogeneity in the transverse plane (y-z plane) of 
the wake. Based on this assumption,  » 

. This has been recently validated by 
Lefeuvre et al. (2014) using direct numerical simulation 
(DNS) data in the intermediate wake of a square cylinder 
(x/d = 20 - 100). The sum of the unmeasured quantities 

 and  with the probe can therefore be 
estimated approximately as  
using continuity and the approximation  » 

. The mean energy dissipation rate based 
on the homogeneity in the transverse plane is then given 
by 

 

    (2) 

 
Lefeuvre et al. (2014) compared various surrogates of 

 based on different assumptions in the turbulent interme-
diate wake of a square cylinder, and found that  can 
provide the most accurate estimation of the energy dissi-
pation rate. A similar result may be expected in the wake 
of a circular cylinder even though it may be less isotropic 
than a square cylinder wake (Antonia et al., 2002b). This 
expectation is not unreasonable since contains nearly 
all the terms that make up the true energy dissipation rate 
in Eq. (1). Indeed, Eq. (2) has been used as the reference 
value of the true mean energy dissipation rate in quite a 

few studies (e.g. Zhu and Antonia, 1996a; Yiu et al., 2004; 
Mi and Antonia, 2010). Given that the detailed calibration 
of the present probe for measuring the velocity derivatives 
has been conducted in Antonia et al. (2002a), we take  
as the reference value of  in the present study. 

Hussain and Hayakawa (1987) proposed a topological 
model for the mechanism of a turbulent plane wake, 
where the turbulence production occurs mainly along the 
diverging separatrix and the turbulent mixing takes place 
in the region where the ribs and rollers are in contact with 
each other. However, they provided no information on the 
spatial distribution of the turbulent energy dissipation in 
the model. Landau and Lifschitz (2011) commented that 
the energy dissipation rate had to be considered as a fluc-
tuating quantity, in the same manner as any other fluctuat-
ing quantity which is likely to be affected by the large 
scale motions. A very distinct feature in a plane wake is 
the dominance of the Kármán vortex street at small x/d, 
which is followed by its gradual weakening and eventual 
disappearance as x/d increases. Therefore, it is of great 
importance and interest to investigate how the spatial 
organization of the turbulent energy dissipation rate is 
affected by the Kármán vortices and how this effect 
evolves downstream as the Kármán vortices weaken. 

The present investigation focuses mainly on the char-
acteristics of the energy dissipation rate in a turbulent 
cylinder wake (x/d = 10 - 40), special attention being 
given to its spatial distribution under the influence of the 
highly coherent Kármán vortices. A phase-averaging 
technique is used to separate the coherent structure and the 
remainder of the energy dissipation rate along with its 
components. 

 
  

EXPERIMENTAL DETAILS 
Experiments were conducted in an open-loop low tur-

bulence wind tunnel with a working section of 0.35 m ´ 
0.35 m and 2.4 m long. A circular cylinder with a diame-
ter d = 12.7 mm was used to generate the wake. The free-
stream velocity  = 3.0 m/s. The Reynolds number 
based on  and d is 2.5 ´ 103. A movable probe (figure 
1b and c) consisting of four X-wires was used to measure 
the velocity fluctuations and their derivatives simultane-
ously. The separation between the two inclined wires of 
each X-wire was about 0.6 mm. Two of the X-wires, b 
and d, were aligned in the (x, y) plane and separated by  
= 1.9 mm; the other two, a and c, were separated in the (x, 
z) plane by  = 1.9 mm. Measurements were made at x/d 
= 10, 20 and 40. The output signal from the anemometers 
were passed through buck and gain circuits and low-pass-
filtered at a cur-off frequency  close to , which 
is commonly identified as the Kolmogorov frequency , 
where  is the mean streamwise velocity on the center-
line of the wake and  is the Kolmogorov 
length scale. The filtered signal was subsequently sampled 
at a frequency  (3200 Hz at x/d = 10 and 20; 2500 
Hz at x/d = 40) using a 12-bit A/D converter. The record 
duration was about 60s. 

Table 1 gives the maximum velocity defects , wake 
half-width and spatial resolution of the probe in terms 
of the Kolmogorov length scale at the wake centerline of 
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the local x* position. Hereinafter, the asterisk ‘*’ denotes 
the normalization by d and . The  is estimated based 
on Eq. (2). The detailed description of the experimental 
set-up and estimation of the experiment uncertainty is 
available in Zhou et al. (2003) and will not be repeated 
here. 
 
 
Table 1. Maximum velocity defect, mean velocity half-
width and spatial resolution of the probe at the wake 
centreline of three x* positions. 
 

x*        
10 0.22 0.64 4.03 0.17 4.8 11.2 11.2 
20 0.18 0.88 1.63 0.21 3.9 9.0 9.0 
40 0.14 1.4 0.41 0.30 2.7 6.3 6.3 

 

 
 
Figure 2 Comparison of  between the present data  
and those from Mi and Antonia (2010): (a) x* = 10, (b) 40. 
 
 

It is important to make sure that the spatial resolution 
of the probe is adequate for the study of the velocity de-
rivatives and therefore the turbulent energy dissipation 
rate. Previous measurements indicated that the optimum 
wire separation of the probe for the velocity derivative 
measurement is about 3-5h (e.g. Antonia et al., 1993; 
Shafi and Antonia, 1997); a larger wire separation can 
cause the degraded velocity derivatives, while a smaller 
wire separation may overestimate the velocity derivatives 
because of the electronic noise contamination. The present 
vorticity probe was fabricated, with a great effort, to meet 
the above criterion of wire separation between the oppo-
site two cross-wires, although the corresponding wire 
separations  and  (table 1) are still larger than 
the optimum value.   

The attenuation of the spatial resolution of the probe is 
examined by comparing the distribution of  at x* 
= 10 and 40 with those measured by Mi and Antonia 
(2010), as shown in figure 2. In their study of the local 
axisymmetry assumption for x*=10 -70 (Re = 3000), they 
used two X-wires with a spatial resolution of about 8h at 
x* =10 and 5 at x*= 40, which are close to the optimum 
spatial resolution of about 4. In contrast, our spatial reso-
lution is 11 at x* = 10 and 6 at x* = 40 (table 1). The 
agreement between the two sets of data actually is quite 
good, especially at x* = 40. The present measurement 
appears to be appreciably below that of Mi and Antonia 
(2010) only near the centerline at x* = 10 (y/L < 0.3). Zhu 
and Antonia (1996b) investigated the influence of the 
probe resolution on the spectra of vorticity measured 
using a probe with the same geometry used here. They 
found that the vorticity spectra were attenuated mainly at 
large wavenumbers. Note that the primary interest of the 
present study is the spatial distribution of the energy 
dissipation with respect to the Kármán vortices whose 
dimension is comparable to the wake half-width (Hussain 
and Hayakawa, 1987; Chen et al., 2016), much larger than 
the Kolmogorov length scale. As such, the resolution of 
the probe is considered to be adequate for the present 
study.  
 
 
RESULTS AND DISCUSSION 

In order to examine the spatial structure of the energy 
dissipation rate, a phase averaged technique is employed 
to separate the coherent structures from the remaining 
smaller scales of the flow field. The phase average of an 
instantaneous quantity  is given by , 
where p represents phase and N is the total number of 
detections, about 1800, 1700 and 400 at x* = 10, 20 and 40, 
respectively. Based on the triple decomposition (Hussain 
1983),  can be viewed as the sum of the time mean 
component  and the fluctuating component . The latter 
can be further decomposed into a coherent fluctuation 
and a remainder , viz. . The  is con-
nected to the large-scale coherent structures, while  is 
the remainder. 

Hereinafter, the phase  in the iso-contour plot will be 
interpreted in terms of a longitudinal distance based on 
Taylor’s hypothesis,  = 0 to 2p corresponding to the 
averaged vortex wavelength. The same scale is used for 
the longitudinal and lateral directions in the contour plots 
in an effort to minimize any possible distortion in the 
physical space. The positions of the centers and saddle 
points, identified from the phase-averaged sectional 
streamlines (not shown), are marked by ‘+’ and ‘´’, re-
spectively. The thick dashed lines give an approximate 
idea of the periphery of the spanwise vortex, which is 
about 25% of the maximum magnitude of  (not shown). 
The inclined dash dotted line passing through the saddle 
point represents the diverging separatrix. Flow is from left 
to right. 

Figure 3 shows the phase-averaged iso-contours of 
two predominant components,  and , of 
the energy dissipation rate at x* = 10 and 40, their maxi-
mum concentrations being one order of magnitude larger 
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than those of the other components. This is not surprising 
since  and  are associated with the 
coherent spanwise vorticity ( ). At x* 
= 10 (figure 3a, c), the concentration of  occurs 
near the border of the vortex, while that of  
coincides approximately with the vortex center. There is a 
phase shift of about  between the maximum concentra-
tions of  and   The different behaviors 
of the two quantities reflect largely the distinct influence 
of the anisotropic large-scale motion on different velocity 
derivatives. At x* = 40 (figure 3b, d), the phase shift be-
tween the maximum concentrations of  and 

 shrinks as the Kármán vortices become weak 
due to, e.g., breaking up (Chen et al., 2016). Note that the 
maximum concentration of  is about 2-3 times 
that of  at the two x* positions, which is ascribed 
to the influence of mean shear ( ). 
 

 

Figure 3. Iso-contours of the phase-averaged velocity 
derivatives (a, b)  and (c, d) . Contour 
interval: (a-d) 0.049, 0.0013, 0.030, 0.0010. 
 
 

The iso-contours of and , which 
are in general associated with the remaining smaller-scale 
motions, are similarly distributed, with their maximum 
concentrations within the spanwise vortex at x* = 10 (fig-
ure 4a, c) but appear disorganized at x* = 40 (figure 4b, d) 
probably due to the very weak Kármán vortices there. In 
distinct contrast to the large disparity in the magnitude of 
the maximum concentration between  and 

 (figure 3), the maximum  and 
 are quite close to each other, even at x* = 10 

where the coherent motions are strong. In fact, the iso-
contours of the remainders for other velocity derivatives 
(not shown) also display similar topologies to those of 

 and  at the same x*, with compara-
ble maximum concentrations. This is reasonable since the 
small-scale structures of the velocity derivatives are ex-
pected to be more isotropic compared to the large-scale 
structures, even under the influence of the relatively 
strong coherent motions at x* = 10. 
 

 

Figure 4. Iso-contours of the remainders (a, b) 
and (c, d) . Contour interval: (a-d) 0.10, 0.010, 
0.11, 0.013. 
 

 

Figure 5. Iso-contours of the phase-averaged turbulent 
energy dissipation rate (a, b)  and the remainder (c, d) 

. Contour interval: (a-d) 0.080, 0.0028, 0.57, 0.072. 
 
 

Figure 5 presents the iso-contours of the phase-
averaged energy dissipation rate  and the remainder 

 at x* = 10 and 40. The iso-contours (figure 5a, b) of 
the coherent energy dissipation rate exhibit a distribution 
similar to  (figure 3a, b), which makes the pre-
dominant contribution to . On the other hand, the 
concentrations of the remainder (figure 5c, d) coincide 
very well with the Kármán vortex, as those of  
and  (figure 4), particularly at x* = 10 and x* = 
20 (not shown). The maximum concentration of   (0.72, 
0.025 at x* = 10 and 40, respectively) is much smaller than 
that of the corresponding remainder (6.3, 0.49) because 
energy dissipation occurs primarily at small scales (e.g. 
Pope 2001). It seems plausible that the turbulent energy 
dissipation takes place predominantly within the Kármán 
vortices, at least for x* £ 20. The observation of the re-
mainder energy dissipation rate is consistent with Hussain 
and Hayakawa's (1987) finding that the incoherent turbu-
lence intensity occurs largely within the Kármán vortex at 
x* = 10 - 40 and its maximum concentration almost coin-
cides with the Kármán vortex center. Since the turbulent 
energy dissipation rate physically reflects the rate of the 
turbulent energy dissipated into heat at small scales, its 
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spatial distribution is expected to be associated with that 
of the remainder or small-scale turbulent energy. At x* = 
10, the Kármán vortices are strong and highly organized; 
as such, the iso-contours of the energy dissipation rate 
appear to be well organized (figure 5a, c). At x* = 40 
(figure 5b, d), the Kármán vortices are very weak due to 
vortex interactions and breakup. As a result, the coherent 
energy dissipation rate appears markedly less organized; 
so does the remainder. Nevertheless, the maximum con-
centration of the remainder remains discernible within the 
Kármán vortex periphery. 

 

 

Figure 6. Coherent contributions (a) to ,  
and  across the wake at x* = (a) 10, (b) 40. 

 
 
The well-organized structures at x* = 10, as evident in 

the iso-contours of  and  (figure 3) and 
 (figure 5) are apparently correlated with the occur-

rence of the Kármán vortices. The effect of the large-scale 
motion on the small scales can be quantified by the coher-
ent contribution, which is given at a given y* position by 
the ratio of the structural average of the phase-averaged 
coherent quantity to the corresponding Reynolds-averaged 
quantity (Zhou et al. 2003), namely 

 
                                       (3) 

 
where b and g represent the velocity derivatives , 
and the double bar means average within one vortex shed-
ding period. 

Figure 6 presents the distribution of a of , 
 and  across the wake at x* = 10 and 40. The 

coherent contribution to the mean energy dissipation, i.e. 
, is calculated as the ratio to  of the sum of the 

structural average of all the terms making up  in Eq. 
(2).  

At x* = 10 (figure 6(a)), the coherent contribution ac-
counts for  and  up to 35% and 18%, 
respectively, near the centerline. Such large coherent 
contributions are internally in agreement with the well 
organized structures of their coherent part at x* = 10 (fig-
ure 3a, c).  

The maximum coherent contribution to  is about 9% 
at y* = 0.6 which roughly corresponds to the y* position of 
the maximum concentration of  (figure 5a). This rela-
tively small contribution compared with that to  
or  is mainly from  and , and the 
coherent contributions from the other velocity derivative 
terms to  are all quite small. The results suggest that 
the coherent motions make a large contribution to 

 and , though the coherent contribution 
to the total energy dissipation rate is small, which intrinsi-
cally reflects the way how the small scales feel the influ-
ence from the large-scales associated with the Kármán 
vortices. It seems that the large-scale coherent motions of 
the present flow interact with the small-scale turbulence 
mostly via  and . The effect of the large-scale 
motions can be still felt at x* = 20 (not shown), where the 
maximum coherent contribution to ,  and 

 are about 15%, 6% and 4%, respectively. Because of 
the rather weak coherent motions at x* = 40, the coherent 
contribution there is negligibly small (figure 6b). 
 

 

 
Figure 7. Topological model of flow in a plane wake. +, 
vortex centre; ´, saddle point; Þ engulfed non-turbulent 
fluid; ==> flow of produced turbulence; A: turbulence 
production; B1 & B2: turbulent mixing; C: turbulent 
kinetic energy dissipation. 

 
 
Hussain and Hayakawa (1987) proposed a topological 

model for explaining the mechanisms of the turbulent 
plane wake. Since the energy dissipation rate was not 
measured, the model did not provide any information on 
the spatial distribution of the energy dissipation rate. 
Figures 5 shows unequivocally that the predominant 
turbulent energy dissipation rate, i.e. , is mostly 
concentrated within the spanwise vortex, particularly at x* 
= 10, which should be ascribed to the high concentration 
of turbulent kinetic energy there (Hussain and Hayakawa 
1987). As a result, a more complete picture may be cast 
presently for the turbulence dynamics by incorporating the 
information on the energy dissipation rate into Hussain 
and Hayakawa’s model, as shown in figure 7. The saddle 
region (denoted as A), where intense strain is induced by 
the rotating motion of successive vortices, can be identi-
fied with the turbulent energy production area. The non-
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turbulent fluid from the free stream is engulfed into the 
rotating motion of the ribs (or quasi-streamwise vortices) 
and is subjected to the vortex stretching by the strain 
along the diverging separatrix, leading to the production 
of turbulence. Turbulent mixing would mostly occur at the 
region (denoted as B1 and B2) where the streamwise 
vortex and the spanwise vortex are in contact with each 
other since the direct interaction between the two near 
orthogonal vortex structures can produce three-
dimensional vorticity fluctuations (Hussain and Hayakawa 
1987). The turbulence thus produced will then be en-
trained by the rotational motion of the spanwise vortex 
and accumulated within the vortex structure before being 
finally dissipated as flow develops downstream. 
 
 
CONCLUSIONS 

(1) It is found that  and  play an im-
portant role in the interaction between large-scale and 
small-scale motions in the present flow. The maximum 
coherent contribution associated with the Kármán vortices 
to  and  can be as high as 35% and 18%, 
respectively, near the centerline at x* = 10; on the other 
hand, the coherent contributions to the other velocity 
derivatives are almost one order of magnitude smaller, 
resulting in a maximum coherent contribution to the total 
mean energy dissipation rate of about 9% at x* = 10. 
Thiesset et al. (2014) found that, close to the wake genera-
tor (say at x* = 10), the influence of the coherent motions 
can be felt by even the smallest scales. The present study 
further indicates that the coherent motions in the present 
flow interact with the small-scale turbulence mostly via 

 and . 
(2) Iso-contours of the phase-averaged energy dissipa-

tion rate  are quite similar to those of  which 
contributes most to . The concentrations of the remain-
der , whose maximum is nearly one order of magni-
tude larger than that of , occur mainly within the Ká-
rmán vortices. It is concluded that the dominating energy 
dissipation takes place within the Kármán vortex. A more 
complete picture for the flow mechanism is thus proposed 
by incorporating the information on the energy dissipation 
into Hussain and Hayakawa’s model, as shown in figure 7. 
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