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Modulated roll cells in rotating plane Couette flow of viscoelastic fluid

Tomohiro Nimura

Department of Mechanical Engineering,
Tokyo University of Science

Yamazaki 2641 Noda, Chiba 278-8510, Japan
nimura8t@gmail.com

Takahiro Ishida

Department of Mechanical Engineering,
Tokyo University of Science

Yamazaki 2641 Noda, Chiba 278-8510, Japan

Takuya Kawata

Department of Mechanical Engineering,
Tokyo University of Science

Yamazaki 2641 Noda, Chiba 278-8510, Japan
kawata@rs.tus.ac.jp

Takahiro Tsukahara∗

Department of Mechanical Engineering,
Tokyo University of Science

Yamazaki 2641 Noda, Chiba 278-8510, Japan
tsuka@rs.tus.ac.jp

ABSTRACT
In order to understand the (polymer-induced) drag-reduction

mechanism in wall turbulence of viscoelastic fluid, it must be cru-
cial to elucidate how the viscoelasticity modulates the streamwise-
elongated vortical structure, which is a characteristic feature in the
near-wall turbulence. In the present study we numerically study
the roll-cell structure of laminar rotating plane Couette flow of vis-
coelastic fluid, aiming at further understanding the effect of vis-
coelasticity on the longitudinal vortices in shear flow. The case of
Re= 25 and Ro= 0.4 is focused as a typical state that provides two-
dimensional steady roll cells for the Newtonian fluid case, and we
investigate how such two-dimensional vortices would be modulated
by the viscoelasticity at different Weissenberg numbers. The vis-
coelasticity is found to give rise to an unsteady flow state where the
two-dimensional roll-cell structure is periodically strengthened and
suppressed with the time scale of the relaxation time of the fluid vis-
coelasticity. Such a pulsatile fluid motion was caused by the delay
in the response of the viscoelastic force to the change in the veloc-
ity gradient, and the effect of the viscoelasticity to the momentum
transport in the flow field is also discussed in detailed.

INTRODUCTION
The drag reduction effect by adding polymer or surfactant into

a liquid turbulent flow has been studied for many years since its
discovery in the 1940s (Toms, 1948). Recent studies by means of
experiments and direct numerical simulations (DNS, Sureshkumar
et al., 1997) have revealed that stretched polymer molecules by tur-
bulent motions would cause a high extensional viscosity and sup-
press turbulent eddies, and some researchers also proposed a mech-
anism of drag reduction in terms of energy storage and release by
the polymer molecules or surfactant micellar networks (Procaccia
et al., 2008). However, the mechanism of the drag reduction effect
remains still ambiguous due to complexities of viscoelastic effect
as well as turbulence. Modulation of coherent streamwise vortical
structures in the near-wall region of wall turbulence is considered
as a key phenomenon to understand the drag-reduction mechanism
of the viscoelastic wall-bounded turbulent flow.

Plane Couette flow subject to spanwise system rotation (rotat-
ing plane Couette flow, RPCF), the definition of which is schemat-
ically shown in Fig. 1, is known to have distinct coherent stream-
wise roll cells and can, therefore, be a good test case to study the
effect of viscoelasticity on longitudinal vortices in a wall-bounded
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Figure 1. Definition of the RPCF and the coordinate system.

shear flow. In the case of anti-cyclonic system rotation, where the
system is rotating in the opposite direction to the wall shear, the
flow is linearly unstable due to the Coriolis force effect, which gives
rise to streamwise-elongated roll-cell structure. Depending on the
Reynolds number and the system rotation rate, the coherent roll
cells take various types of form, such as two-dimensional steady
roll cells and three-dimensional wavy roll cells (Tsukahara et al.,
2010; Kawata and Alfredsson, 2016a; 2016b). Comparing the flow
structure of this flow for Newtonian and viscoelastic fluid one may
gain physical insight into how the viscoelasticity modulates longi-
tudinal vortices in shear flow.

In this work we perform a parametric DNS study of the vis-
coelastic RPCF systematically changing three flow parameters, i.e.,
the Reynolds number Re, the rotation number Ro, and the Weis-
senberg number Wi (the definitions of these parameters are given
in the next section). The laminar case of Re = 25 and Ro = 0.4 is
focused as a typical state accompanied by steady two-dimensional
roll cells that appear for the Newtonian fluid, and the modulated
flow structures for viscoelastic fluid are compared at different val-
ues of Wi. It is shown that the addition of the viscoelasticity gives
rise to the unsteady flow state where the two-dimensional roll cells
are periodically strengthened and suppressed. The mechanism of
such periodic unsteadiness is addressed in detailed, and it is also
discussed how such a change in the flow states by the viscoelastic-
ity affects the momentum transport (Dubief et al., 2004) in the flow
field.

DIRECT NUMERICAL SIMULATION

Flow System
The coordinate system is defined as shown in Fig. 1: the x-, y-,

and z-axes are taken in the streamwise, wall-normal and spanwise
directions, respectively. The top and bottom walls are located at y =
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Figure 2. Comparison of the roll-cell structure of the RPCF at Re = 25 and Ro = 0.4 for (a) the Newtonian fluid and (b-d) the viscoelastic
fluid with three different Wi: (b) Wi = 500, (c) Wi = 1000, (d) Wi = 2000. The colour indicates fluctuations in the streamwise velocity u′/Uw

and the black arrows show the pattern of the cross-flow vector (v,w). 2h length of the arrows corresponds to velocity magnitude of Uw.

h and y = 0, respectively, and they are moving in opposite direction
with speed Uw. The Reynolds number Re and the rotation number
Ro are defined, based on the wall speed Uw and the half channel
height δ (= h/2), as Re =Uwδ/ν and Ro = 2Ωzδ/Uw, respectively,
where ν is kinematic viscosity at zero shear rate.

Governing Equations and Numerical Procedure
The governing equations numerically solved in the present

DNS are the non-dimensional continuity equation and the Navier-
Stokes equation written on the frame rotating with the system:

∂u∗i
∂x∗i

= 0, (1)

∂u∗i
∂ t∗

+u∗j
∂u∗i
∂x∗j

=−∂ p∗

∂x∗i
+

β

Re
∂ 2u∗i
∂x∗j

2 −Roεi3ku∗k +
1−β

Wi
∂ci j

∂x∗j
. (2)

Here, p is the pressure, εi jk is the Levi-Civita symbol, and the vari-
ables with the superscript ∗ stand for the non-dimensional quanti-
ties normalised by δ and/or Uw. The non-dimensional parameters
of the viscosity ratio and the Weissenberg number are defined as
β = µs/(µs + µa) and Wi = U2

wλ/ν , where µs and µa are the vis-
cosity of the solution and the additive, respectively, and λ is the
relaxation time of the additive. The Weissenberg number Wi physi-
cally represents the ratio of the relaxation time of the additive to the
viscous time scale. The conformation tensor ci j of the last term in
Eq. (2) is the viscoelastic stress, which is governed by a constitutive
equation. We adopted the Giesekus model (Giesekus, 1982):

∂ci j

∂ t∗
+

∂u∗mci j

∂x∗m
−

∂u∗i
∂x∗m

cm j−
∂u∗j
∂x∗m

cmi

+
Re
Wi

[
ci j +α(cim−δim)(cm j−δm j)−δi j

]
= 0,

(3)

where α is the mobility factor. In the present study, the viscosity
ratio and the mobility factor are fixed at β = 0.8 and α = 0.001.

We employed the finite difference method for the spatial dis-
cretization. The forth-order central difference scheme was used for
the x- and z-directions, while the second-order central difference
scheme was adopted in the wall-normal (y-) direction. For the time
integration, the second-order Crank-Nicolson and the second-order
Adams-Bashforth schemes were used for the wall-normal viscous
term and the other terms, respectively. As for the boundary condi-
tion, the periodic boundary conditions were imposed in the x and z
directions and the non-slip condition was applied on the walls. The
computational domain size (Lx×Ly×Lz) was 7.5h×h×2h and the
grid number was 128 in all directions.

As already stated, we focus on the case only of Re = 25 and
Ro = 0.4 in the present paper, and the DNS results for several dif-
ferent Weissenberg numbsers in a range of Wi = 0–2000 are com-
pared.

RESULTS
Figure 2 presents the cross-sectional view of flow structures

observed in the laminar RPCFs of Newtonian fluid and viscoelastic
fluids for each Wi. The contour indicates the fluctuation magnitude
of the streamwise velocity component u′/Uw and the arrows rep-
resent the pattern of cross-flow vectors (v,w). Note that the mean
components of v and w are nought in the present flow system. The
length of 2h of the black arrows corresponds to the velocity magni-
tude of Uw. As shown in the figure, a large-scale roll-cell structure
with the size of channel gap clearly appears for all cases, and the
secondary motion of the roll cells induces the periodic spanwise
variation of streamwise velocity of about 15% of the wall speed
Uw. It also should be noted that all these observed structures are
two-dimensional, i.e., straight infinitely in the streamwise direction.

Although the spatial structures that appear in these four cases
are quite similar to each other, the significant difference is seen in
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Figure 3. Space-time diagrams of fluctuations in the streamwise
velocity u/Uw on the channel centreline y/h= 0.5 for the viscoelas-
tic fluid cases: (a) Wi = 500, (b) Wi = 1000, (c) Wi = 2000. The
black lines in the panel (b) represent the instances depicted for the
later analysis.

their temporal behaviours. Figure 3 presents space-time diagrams
(z-t diagram) of u′/Uw on the centreline of the channel at an arbi-
trary streamwise position for the viscoelastic fluid cases. From the
diagram, one may find a pair of positive and negative regions that
alternate in the spanwise direction. These regions correspond to
streaks induced by streamwise roll cells. In the case of Newtonian
fluid, the two-dimensional roll cells are steady (not shown in the
figure) and, hence, is similar with the case of the present smallest
Weissenberg number Wi = 500 given in Fig. 3(a), where one may
see the position and magnitude of streaks do not change in time.
On the other hand, for the cases of higher Weissenberg numbers
shown in Figs. 3(b) and (c), the periodic variations of the stream-
wise velocity are clearly confirmed. It is also seen here that despite
significant variation of the magnitude the velocities does not change
the sign; for example, at z/h = 1 in the panel (c) u′ is always nega-
tive, while the magnitude significantly changes in time. Therefore,
the flow structure only repeats being strengthened and weakened
periodically without altering the sign.

More details of such ‘pulsatile motion’ of the structure are pre-
sented in Fig. 4, in which the time series of the streamwise and
wall-normal velocities at z/h = 1.0 of Fig. 3 are compared for dif-
ferent Weisseberg numbers. As shown in the figure, in the cases
of Newtonian fluid and Wi = 500 both of the velocity components
are constant in time, while in the higher Weissenberg number cases
significant periodic variations can be seen. The amplitude of the
pulsatile variation is approximately 10% and 5% of the wall speed
Uw for u′ and v′, respectively. It is also seen that in the phase where
u′ is decreasing (and v′ is increasing) the variation is not mono-
tonic, which can be typically seen at around tUw/δ = 75 and 175,
and such deviation from simple sinusoidal curve is more significant
for higher Weissenberg number case.

One can also see that the period of the pulsatile motion is sig-
nificantly long compared to the time scale of the wall shear, about
100tUw/δ in both cases. As the relaxation time of the additive in
terms of the wall-shear time scale is λ/(δ/Uw) = Wi/Re = 40, and
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Figure 4. Time sequence of fluctuations in (a) the streamwise ve-
locity u′/Uw and (b) the wall-normal velocity v′/Uw at channel cen-
tre (y/h = 0.5). Each four lines indicate Newtoinan fluid and differ-
ent Wi.

80 for Wi = 1000 and 2000, respectively, this period of the pulsatile
motion is on the order of the relaxation time. It also should be noted
here that between the cases of Wi = 1000 and 2000 the period of the
pulsatile fluid motion is not changed although the relaxation time is
doubled.

Comparing the mean value of the velocities shown in Fig. 4,
one can see that the magnitude of the velocities decrease as the
Weissenberg number increases. In the case of Wi = 500 both the
magnitudes of u′ and v′ are significantly decreased compared to
those in the case of Newtonian fluid, and also for higher Wi cases the
velocity magnitude decreases as Wi increases. This means that by
the addition of viscoelasticity the spatial variation of the velocities
caused by the flow structure is weakened.

Figure 5 represents variation of the skin-friction coefficient as
a function of Wi. The values of C f were obtained as the mean
streamwise-velocity gradient on the wall that are averaged in the
streamwise and spanwise directions and in time. It can be seen that
C f decreases with increasing Wi. The C f value for Wi = 2000 de-
creases by 10% of that of the Newtonian fluid case. Such a decrease
in C f indicates that the momentum transport by the flow structure
is weakened by the viscoelasticity, which is consistent with the ten-
dency observed in the time series of velocities in Fig. 4.

Now, we pick up four representative instances in the pulsatile
change of flow structure for Wi = 1000 that are defined in Fig. 3(b)
with black vertical lines. The time instants t = t1 and t3 are moments
when the spanwise variation of fluctuations in u′/Uw on the channel
centreline is least and most significant, respectively, whereas t2 and
t4 are those when the trace of the viscoelastic stress tensor c11 +
c22 + c33 become minimum and maximum, respectively. Figure 6
shows the spatial two-point correlation function of the wall-normal
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Figure 5. Effect of viscoelasticity on the skin friction coefficient.

velocity v on the channel centreline at these moments, and it can be
easily seen that the profiles of Rvv(∆z) are almost identical to each
other, indicating that during the pulsatile variation of roll cells only
the magnitude of the vortical structure are varied in time, while the
‘shape’ of the roll-cell structure, such as the spanwise width of the
roll cells, keeps unchanged.

Cross-sectional views of the roll-cell structure at these in-
stances are presented in Fig. 7. Each column of the figure array
gives the distributions of (a1–4) velocities, (b1–4) viscous forces,
and (c1–4) viscoelastic forces at t = t1, t2, t3, and t4 from the top
to the bottom. In the panels (a1–4), the fluctuating streamwise ve-
locity u′/Uw is shown by the contour and the cross-flow vectors are
shown by the black arrows. It is seen that the roll-cell structure is
strengthened from (a1) to (a3) and weakened again in (a4). In the
panels (b1–4), the streamwise viscous force is shown by the contour
and the black arrows represent the in-plane viscous force vectors.
Comparing the panels (b1–4) to (a1–4), one can see that the distri-
bution of the in-plane viscous force is counterrotating against the
secondary motion of the roll cells, and the positive/negative peak of
the streamwise viscous force corresponds to the negative/positive
peak of the fluctuating streamwise velocity, indicating that the vis-
cous force is always counteracting the flow structure.

In the panels (c1–4) of Fig. 7, the streamwise normal compo-
nent of the viscoelastic stress tensor c11 is shown by the contour, and
the white arrows represent the in-plane viscoelastic force (E2,E3),
where

E2 =
1−β

Wi

(
∂c22

∂y∗
+

∂c23

∂ z∗

)
, E3 =

1−β

Wi

(
∂c32

∂y∗
+

∂c33

∂ z∗

)
. (4)

The streamwise normal viscoelastic stress c11 is dominant in the
trace of the viscoelastic stress tensor cii in this flow, and the physical
meaning can be interpreted as the polymer stretching in the stream-
wise direction. It is seen that c11 is almost zero inside the roll cells
while it increases on the edge of the roll cells, e.g., at z/h = 0, 1
and 2 of Fig. 7. A similar tendency can be observed for the in-plane
viscoelastic force distribution. In particular, comparing with the in-
plane viscous force at the same instance, one can see that magnitude
of the viscoelastic force is generally smaller than the viscous force
inside the roll cells (the viscous and viscoelastic forces in the panels
(b1–4) and (c1–4) are shown with the same length unit scale of the
arrows), while on the edges of the roll cells the viscoelastic force is
as large as the viscous force.

Such tendency in behaviour of the viscoelastic force is more
easily seen in Fig. 8, where the region around (z/h,y/h) = (1,0.5)
of Fig. 7(b4) and (c4) are magnified. Inside the roll cells, the white
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Figure 6. Spanwise spatial two-point correlation function of the
wall-normal velocity Cvv(∆z) on the channel centreline for Wi =
1000. The profile of Cvv(∆z) is plotted for four different instances
t = t1, t2, t3, and t4 shown in Fig. 3(b) by the corresponding white
lines.

arrows in the bottom figure representing the viscoelastic force are
clearly shorter compared to the black arrows of the viscous force in
the top figure, while on the edge of the roll cell (around z/h = 1)
the white arrows are longer than the black arrows. It also should
be noted that in the region of 0.2 ≤ y/h ≤ 0.4 around z/h = 1 the
viscoelastic force is in the same direction as the cross flow pat-
tern. Such tendency supporting the secondary motion of the roll-
cell structure cannot be observed for the viscous force, and this can
be an important difference in behaviour of the viscous force and the
viscoelastic force.

The other noteworthy tendency here is the delay in the response
of the viscoelastic force to the variation of the flow structure: while
the roll-cell structure and the viscous force become most signif-
icant at t = t3, it is t = t2 when the viscoelastic force becomes
most largest. Such time lag between the variation of flow field and
the viscoelastic tensor is shown more detailed in Fig. 9, where the
time series of the kinematic energy and the trace of the viscoelastic
stress tensor integrated over the cross section of the channel, K =∫ 2h

0
∫ h

0 (u
2 + v2 +w2)/2dydz and Cii =

∫ 2h
0
∫ h

0 (c
2
11 + c2

22 + c2
33)dydz,

are presented for the cases of Wi = 1000 and 2000. In both cases,
one can clearly seen there exist significant delay between the tem-
poral variation of K and Cii. In order to quantify the time delay
between the flow structure and the viscoelastic stress, the temporal
cross correlation between the time series of K and Cii are evalu-
ated and shown in Fig. 10(a) for three different Wi cases. For all
the cases, the cross correlation between K and Cii at ∆t = 0 is neg-
ative, and the first positive peak of cross correlation is located at
t/λ = Re/Wi · t∗ = 1.5, 0.81, and 0.34 for Wi = 500, 1000, and
2000, respectively. This indicates the time delay between the flow
structure and viscoelastic stress is on the order of the relaxation time
λ , although it still cannot be scaled well only by λ .

In order to shed light on the energy transfer between the flow
structure and the additive (polymer) of the viscoelastic fluid, the
energy transfer term between the kinetic energy of the flow field and
the ‘elastic’ energy of the polymer is focused. The kinetic-energy
transport equation is written as

Dk
Dt

=
∂ui p
∂xi

+
β

Re
∇

2k− β

Re

(
∂ui

∂x j

)2

+
1−β

Wi

(
∂uici j

∂x j
− ci j

∂ui

∂x j

)
,

(5)

and one can see that ci j∂ui/∂x j in the right-hand side appears also
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Figure 7. Temporal evolution of (a1-4) velocity field, (b1-4) viscosity force field, (c1-4) vicoelastic force field on arbitrary cross-sectional
plane for Wi = 1000. The column of the figure array indicates the time evolution; (a-c1), (a-c2), (a-c3), and (a-c4) present the distributions at
t = t1, t2, t3, and t4, respectively, that are defined in Fig. 3(b). The colours and the arrows in the figures represent; (a1-4) the same as in Fig. 2,
(b1-4) the streamwise component and in-plane components of the viscous force vector, respectively; (c1-4) the streamwise normal component
of the viscoelastic stress tensor c11 and in-plane components of the viscoelastic force vector (E2,E3), respectively.

in Eq. (3) with opposite sign, which indicates that this term phys-
ically represents the energy transfer between k and cii. Integrating
Eq. (5) over the cross section of the channel, one obtains the equa-
tion for K:

dK
dt

=
β

Re

∫ 2h

0

(
− ∂k

∂y

∣∣∣∣
y=0
− ∂k

∂y

∣∣∣∣
y=h

)
dz

− β

Re

∫∫ (
∂ui

∂x j

)2
dS−Ψii,

(6)

where Ψii =
∫∫

ci j∂ui/∂x jdS is the integrated energy transfer term.
As can be seen from Eq. (6), if not for the viscoelasticity the ki-
netic energy is maintained by the balance between only the vis-
cous diffusion term (the first term) and the viscous dissipation term,
whereas in the case of the viscoelastic fluid the energy transfer term
Ψii comes into play.

Figure 10(b) shows the temporal cross-correlation function be-
tween K and Ψii. It is seen that the cross correlation is almost unity
at ∆t = 0, which means that there is no time delay between the
temporal variation of K and Ψii. If the kinetic energy of the flow

structure increases, the energy is forthwith transferred to the addi-
tive though the energy transfer term Ψii. However, the viscoelastic
stress does not response immediately. There is a certain time de-
lay on the order of the relaxation time of the additive before the
viscoelastic stress reacts, as mentioned above. This delay in the
response of the viscoelastic force gives rise to unsteady periodic
variation with the time scale of the relaxation time.

CONCLUSION
We numerically investigated flow structure of laminar rotating

plane Couette flow of viscoelastic fluid by means of DNS. The case
of Re = 25 and Ro = 0.4 was focused with a particular interest in
how two-dimensional steady roll-cell structure that appears in the
Newtonian fluid case is modulated by the addition of the viscoelas-
ticity. The viscoelasticity was found to give rise to unsteady flow
state in the case of large enough Weissenberg number, where only
the amplitude of two-dimensional roll cells is periodically strength-
ened and suppressed without significant change in the spatial struc-
ture. In the cases of such pulsatile flow state the mean magnitude
of the flow structure is suppressed and the skin friction is reduced
compared to the steady flow states. The viscoelastic force is found
to partly support the secondary motion of the roll cells, unlike the
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Figure 8. Magnified view of the region around (z/h,y/h) =

(1,0.5) in (top) Fig. 7(b4) and (bottom) Fig. 7(c4). The contour and
the length scale of the white arrows are the same as in the original
fiugres.
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Figure 9. Time sequence of the kinetic energy and the trace of the
viscoelastic stress tensor integrated across the cross section of the
channel for (top) Wi = 1000 and (bottom) Wi = 2000.

viscous force that is always counteracting to the roll cells. There
is a certain time delay in the temporal variation of the kinetic en-
ergy of the flow structure and the response of the viscoelastic stress
to it. Such time delay is found to be on the same order as the re-
laxation time of the fluid viscoelasticity but is not perfectly scaled
with it. The present results indicates that energy exchange between
the flow structure and the viscoelasticity of fluid that occurs with a
time scale much longer than those of shear and viscosity gives rise
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Figure 10. Temporal two-point cross-correlation function be-
tween (a) the integrated kinetic energy K and the integrated trace
of the viscoelastic stress tensor Cii, (b) K and the integrated en-
ergy transfer term Ψii for three different Weissenberg number: blue,
Wi = 500; red, 1000; yellow, 2000.

to unsteady flow state, which may have significant impact on the
momentum transport of the flow field.
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