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ABSTRACT

Low wavenumber instabilities in a von Kdrman flow cell are
significantly reduced in an experiment by applying a variable forc-
ing. By reversing the disc rotation sense pseudo-randomly or regu-
larly, only the poloidal inward pumping remains at sufficiently high
change rates. We investigate the influence of the forcing on the
macroscopic scale with ultrasound Doppler measurements along a
line in the transversal plane of the cell. The suppression of slow,
persistent instabilities throughout the cell results in a cut-off of low
wavenumber modes in the velocity spectrum and decreasing char-
acteristic autocorrelation times. Turbulence properties are further
examined in the center of the cell by temporally and spatially re-
solved Lagrangian ultrasound particle tracking. Turbulence features
such as peak height of the compensated second order structure func-
tions or higher order moments of the velocity fluctuations remain as
expected for a fully turbulent flow. With only the poloidal base
flow mode remaining, this forcing method allows to investigate tur-
bulence phenomena in the center of the cell without superimposed
effects.

INTRODUCTION

For turbulence research, it is desirable to create a highly tur-
bulent flow in confined geometries. A standard approach is the use
of two counter-rotating discs in a cylinder, creating the von Kdrman
flow (Douady et al., 1991; Maurer et al., 1994; Voth et al., 2002).
Unfortunately, this flow exhibits a multiplicity of complex instabil-
ities which are very sensitive to boundary conditions - e.g. aspect
ratio (Nore et al., 2004) or blade shape (Ravelet et al., 2004) - and
energy injection mechanisms - e.g. rotation frequency or asymme-
try (Saint-Michel et al., 2014; Cortet et al., 2009).

Several authors observed slow global multi-stabilities of the
flow for a range of Reynolds numbers. De la Torre and Burguete
(2007) found for a set-up with curved blades that the azimuthal ve-
locity in the transversal plane experiences inversions above Re =
10* with time scales much larger than the period of the propeller.
Griinberg and Rosgen (2016) and Miralles (2013) studied long-
term stationary flow modes for straight blades and their stabiliza-
tion in favor of one mode. Modifications which led to stabilization
were introduced by means of anisotropy at the small scales via the
directional alignment of paramagnetic nano chains in the former
case. In the latter case these modes were enhanced by an exter-
nal magnetic field in a magneto-hydrodynamic flow of a conductive
fluid. The global modes might originate from persistent Kelvin-
Helmholtz like vortices which were, among others, visualized by
Cortet et al. (2009) in a cell with curved blades.

The occurrence of such flow patterns affects the homogeneity
and isotropy of the flow. It is thus desirable to investigate mod-
ifications of the turbulent flow independent of these largest scale
instabilities. Since the flow patterns are not yet fully understood
and are unlikely to be controllable in a selective manner, we pro-
pose a method of suppressing the global, long-term modes in order
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to decrease their signature on turbulence properties in the center of
the cell. This will be induced only by a variation of the boundary
conditions, i.e. the forcing method, of the flow cell itself, such that
it can be applied to any fluid. This way, magneto-hydrodynamic
effects or other globally applied changes in fluid properties can be
investigated independently.

Several authors already investigated different forcing types as
compared to the steady forcing for counter-rotating discs. Cortet
et al. (2009) and Saint-Michel et al. (2014) studied global bifur-
cations resulting from asymmetric disc frequencies. In addition,
Saint-Michel et al. (2014) found hysteretic behavior for blades
driven with constant torque and variable frequency. In a set-up
where turbulence is created via the oscillation of two grids, Chien
et al. (2013) used variable frequencies to drive the grids. In contrast
to our work, they aimed at increasing the signature of the large-scale
input onto the small scales. To our knowledge, it has not yet been
tried to suppress these slow instabilities while retaining or improv-
ing the turbulence characteristics in the center of the cell.

We propose forcing with constant amplitude but random sense
of rotation such that the establishment of long-term instabilities
is inhibited. We apply a pseudo-random binary sequence (PRBS)
which has the advantage of not introducing any particular spectral
signature by deterministically approximating the spectrum of white
noise. In order to investigate the dependence on the time scale of
direction change, periodic direction changes are investigated as well
using a regular square wave signal (SW). We choose a square wave
signal as opposed to a harmonic signal in order to keep the forc-
ing amplitude constant while maximizing the energy input into the
system.

EXPERIMENTAL SET-UP

The experimental apparatus consists of the flow cell with two
counter-rotating discs with eight straight blades each, driven by two
brushless motors (figure 1). The fluid, water, is temperature con-
trolled by cooling loops embedded in the top and bottom plates of
the cylinder. The temperature is measured in the central plane of
the cell and is held stable to within 0.1K throughout the tests. The
speed of the upper and lower disc is the same, leading to a sym-
metric mean flow profile with respect to the transversal plane. All
rotation sequences are driven with the same maximum angular ve-
locity, resulting in a maximum Reynolds number of Repax =47 000
or microscale Reynolds numbers Re; between 175 and 225. Some
experimental parameters and their definitions are summarized in ta-
ble 1, more details about the apparatus can be found in Griinberg
and Rosgen (2016).

Since the current measurements in water will later be extended
to an opaque ferrofluid, the flow is investigated both with a Eulerian
and a Lagrangian ultrasound measurement technique.

The Eulerian measurements are carried out using an Ultra-
sound Doppler Velocity Profiler UDOP4000 (UDV) by Signal Pro-
cessing SA which is able to quasi-simultaneously measure velocity



Figure 1: Set-up with transducers.

Table 1: Experimental parameters. (-) denotes the ensemble mean
and u the velocity fluctuation, a the acceleration. Cg is assumed to
be 0.5. R ist the radius of the cell, H the spacing between the discs.
The energy dissipation rate € is computed according to equation 1.

Aspect ratio cell I'=H/2R 1.1
Temperature water O 20 °C

Max. angular velocity Qnax 18.8 rad/s
Reynolds number Re = Q0 R?/V 47 000
Microscale Re-number Re) = \/W 175 - 225
Kolmogorov length scale 1 = (v/g)'/4 47 - 60 um
Kolmogorov time scale T =+/V/€ 22-4.1ms
Integral length scale L=Ceul,/€ 5.4-9.7mm
Integral time scale T = Ceul, /€ 51-75ms

profiles along emission lines of multiple transducers, recording the
velocity component in that direction. We use three transducers in
the mid-plane that are arranged in 45 degrees pointing towards the
center. This method is able to characterize the flow globally and to
detect time dependent flow patterns. The effective time resolution is
62 ms and the spatial resolution is 0.25 mm in the longitudinal and
5-10 mm in the lateral direction.

On the other hand, a custom-built Lagrangian ultrasound mea-
surement technique tracks trajectories of individual tracer particles
in the center of the cell. The latter technique is described in detail
in Griinberg and Rosgen (2016) and makes use of four transduc-
ers covering a volume of approximately 2 x 2 x 2cm? in the center
of the cell. Here, the transducers are arranged with an angle of 80
degrees to each other in the azimuthal and 15 degrees in the axial di-
rection (figure 1). The flow is insonified with an emission frequency
of 2.004 MHz and the echoes of tracer particles are recorded using
undersampling at a sampling frequency of 16 kHz. With the para-
metric frequency estimator ‘pmusic’ as implemented in MATLAB
® (Schmidt, 1986) the Doppler frequency is estimated for window
lengths of 16 samples with 50 percent overlap. This leads to an
effective temporal resolution of 0.51 ms, such that the Lagrangian
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trajectories are spatially and temporally resolved. A Kalman filter
allows for the continuous tracking of the trajectories throughout the
volume (Borer, 2014).

Doppler techniques measure the velocity u via continuous fre-
quency shifts rather than derived from discrete spatial displace-
ments. This allows to compute the acceleration a of the fluid flow
by a first derivative which is less noise sensitive compared to optical
techniques.

In table 1 some main turbulence characteristics for the central
region of the cell are listed. These are deduced from the Lagrangian
tracking data.

RESULTS

The measurements are analyzed in three major steps. First, we
check the agreement between Eulerian and Lagrangian measure-
ments. Second, the influence of different forcings on the large scales
is investigated with the UDV data. Finally, the turbulence properties
in the center of the cell are examined in detail by making use of the
Lagrangian, fully resolved data.

The rms velocity fluctuations from both measurement tech-
niques display a dependence on the variation of the time step dt
(figure 2). For the PRBS forcing, an equivalent mean time step as
compared to the regular square wave signal can be computed. We
use the inverse of the mean frequency of the PRBS spectrum which
equals twice the smallest step length, dt =2 dt,,;y,.

For the Eulerian measurements which do not provide all veloc-
ity components, we use as an approximation the average of the rms
velocity u,s of the radial velocity fluctuations. We average over a
range of 1 cm on the side of the converging beam (according to the
volume covered by Lagrangian measurements) in the center of the
cell utilizing the three channels in the horizontal plane. The scatter
of the rms values is of the order of the marker size for both UDV
and Lagrangian measurements. The kinetic energy in the center de-
creases with increasing change rate caused by the flow reversal of
the shear cells: The zero-crossing of the disc speed with finite ac-
celeration decreases the absolute energy introduced into the system.
More importantly, the dissipation at the blades is increased which
reduces the fluid motion induced in the center of the cell. As will
be shown later, the slow modes in the center of the cell are progres-
sively suppressed with increasing change rate which leads to a de-
crease of the energy contained in the large scales (figure 5) and thus
a lower rms velocity. The UDV measurements do not capture the
true rms velocity since the flow is not fully resolved spatially or tem-
porally and the axial component is neglected. We note that the rms
velocities are overestimated compared to the ones from Lagrangian
data the more inhomogeneous the flow is, i.e. for slow change rates,
as shown below. Discrepancies compared to the Lagrangian data
may in part result from the different averaging processes involved.
Nevertheless, the UDV observations are qualitatively able to char-
acterize the flow changes.

The radial velocity fluctuations derived from UDV data are
used to visualize the macroscopic instabilities we intend to reduce
(figure 4). As a mean flow, only a poloidal inward pumping should
be present (figure 3). The azimuthal velocity from the shear cells,
which we cannot monitor with this measurement technique, should
vanish in the transverse plane. With constant forcing (figure 4, top)
we clearly see superimposed instabilities which are characterized
by a flow reversal in the radial direction and which persist for a
significant time. This time-space signature, where the velocity am-
plitude is plotted over time and radius, can be found with very sim-
ilar appearance in Miralles (2013), even though their experiments
were conducted at higher Reynolds numbers, Re > 10°. Unfortu-
nately, due to their limited measurement possibilities, there is no
microscale Reynolds number available for comparison.
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Figure 2: RMS of velocity fluctuations for different forcings.

(b) Shearing.

(a) Poloidal pumping.

Figure 3: Basic flow modes in a von Kdrmén cell.

By applying the time-variable forcing, the persistent large-
scale phenomena become less pronounced with increasing reversal
rates until their appearance is negligible (roughly at dr = 1 —25s). At
very high change rates, only the base flow mode with the poloidal
inward pumping remains. The overall radial velocity decreases, too,
which is consistent with the reduced rms velocity (figure 2).

This qualitative finding can be translated into a characteristic
time scale which is derived from the auto-correlation function of
the radial velocity at a position » = R/2 from the center, e.g. in the
region where the radial mean flow reaches its maximum. We do
not use the integral of the auto-correlation function since the data
set is not fully converged for large delays due to the relatively long
time scales of the slow modes compared to the time series of only
about 20 minutes each. Instead, we use a characteristic correlation
time 7/, defined by the time when the auto-correlation function
drops below 1/e. In general, this time scale decreases with increas-
ing change rate which means the low wavenumber modes are ever
more suppressed (figure 6). There is a distinct disparity between
the time scales of variable and continuous forcing. Apparently, al-
ready small variations in the forcing break the very slow modes.
These characteristic time scales are two orders of magnitude larger
than the estimated integral time scales of the flow of about 51 ms to
75 ms (table 1, small and large time step dt respectively).

At the same location, i.e. at r = R/2, the power spectral density
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Figure 4: Time-space diagram of radial velocity (UDV mea-
surements). From top to bottom: Constant forcing, square
wave forcing with dt = 5s,dt = 1s and dr = 0.5s.

of the radial velocity fluctuations is computed for different square
wave forcings (figure 5). The PRBS measurements behave accord-
ingly, with a little less pronounced cut-off (not shown for the sake of
clearness). The fluctuations at large scales are suppressed while the
slope of the small scale spectral components remains unchanged.
There is a distinct cut-off frequency which varies with the change
rate but does not coincide with the forcing frequency. One can iden-
tify the forcing frequencies, but their harmonics are no longer vis-
ible. This is consistent with the observation that the estimated in-
tegral length scales are one order of magnitude lower than the di-
mensions of the cell such that the direct interference at the blades
should not be felt too much in the center of the cell.

Since the global flow field is effectively altered by the changed
forcing, it is of interest whether this affects the turbulence properties
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Figure 5: Power spectral density of radial velocity fluctuations
from UDV data for SW and constant forcing.

2,
1.5]
R 0 '
5 0
051 .,
6 °
0 | | | |

15
dr [s]

20 25

—— Constant; o SW; « PRBS;

Figure 6: Characteristic auto-correlation time scale of the ra-
dial velocity from UDV data.

in the center of the cell.

First, the energy dissipation rate € is examined (figure 7). It
is computed from the trace of the acceleration-velocity covariance
tensor, which is valid for decaying, homogeneous turbulence (Mann
et al., 1999).

E=— (u,u,-)

)]

The underlying assumptions for validity may not be fully sat-
isfied in our set-up, but the approach is compatible with our mea-
surement technique and generates robust results. The uncertainties,
indicated by a dotted line for the constant forcing and error bars for
the other cases, are estimated by dividing the data set into subsets
and calculating the standard error of the mean. Consistent with the
rising Reynolds number for increasing step length dt, the dissipa-
tion rate grows. As opposed to the rms velocity, there is a distinct
jump from the values for variable to constant forcing. Presumably,
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Figure 7: Dissipation rate € from Lagrangian data.

this is related to the assumption of decaying, globally homogeneous
turbulence, which is obviously violated when major flow structures
propagate into the center of the cell. This argument is corroborated
in the report by Mann et al. (1999) where the dissipation rate is in-
deed overestimated with this method for a strongly inhomogeneous
flow.

Next, we investigate the scaling constant Cy of the compen-
sated Lagrangian second-order structure function. Due to the lack
of a scaling region at our Reynolds number we estimate Cy based
on the peak of the second-order structure function

Cy =max{Dy(7)/7e} 2)

where

Dy(7) = 3)

(lute+ 1) —u()]?)

is the second-order structure function and u is one fluctuating ve-
locity component.

In figure 8 the peak Cj is plotted after averaging the results of
the two transducers in the transversal plane. The uncertainties are
computed as above, followed by an error propagation calculation.
It can be seen that the maximum of the compensated second order
function stays approximately constant within the uncertainties for
all reversal rates. This is expected for the small variation of the
Taylor microscale Reynolds number. There is an offset between the
variable and constant forcing which corresponds to the difference
in dissipation rate. The measured values agree roughly with DNS
data from Yeung et al. (2006) with the results for variable forcing
being closer to the ones computed by Yeung et al. compared to the
constant forcing.

Furthermore, the Lagrangian spectrum of the velocity fluctua-
tions is computed via the cosine transform of the auto-covariance
function (Sawford and Yeung, 2011) as

E=— %/: ([t +7) u(t)) cos(wr) dt @)



10
dr [s]

APRBSOS“I———C‘

Figure 8: Peak of the second order structure function, CS,
from Lagrangian data.
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Figure 9: Compensated velocity spectrum for square wave
and constant forcing from Lagrangian data.

In figure 9 we see that the normalized energy of the velocity
fluctuations remains constant for different forcings (for clarity only
the results from SW and constant forcing are plotted). Merely at
high wavenumbers, the normalized energy decreases for increasing
change rate. The change in the low wavenumbers as in the UDV
measurements (figure 5) cannot be observed here due to the limited
length of the trajectories. When comparing the frequency range of
the two spectra, the Lagrangian spectrum is cut off approximately
at the frequency where the differences become visible.

Higher order moments of the velocity fluctuations in the dif-
ferent directions are an indicator for the isotropy of the turbulence
in the center. With the flow reversal we enhance a radially inward
pumping mode and reduce the azimuthal flow. It is still expected
that transversal and axial directions differ, which is confirmed in
figure 10, where the skewness and kurtosis of the velocity fluctu-
ations are plotted over time step. In contrast, anisotropies for ex-
ample from inevitable small inhomogeneities of the flow cell in
the transversal plane are reduced with increasing change rate and
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the skewness approaches zero (figure 10a). At the same time, the
kurtosis (figure 10b) is increased from sub-Gaussian behavior for
the transversal components and even further increased for the axial
component. In homogeneous, isotropic turbulence we would expect
Gaussian behavior which is not observed as a result of the modified
forcing. We have to note, though, that these assumptions are never
met in the center of the cell.

CONCLUSION

The slow flow modes appearing in von Kdrman flow cells could
be destroyed successfully without degrading the turbulence proper-
ties in the center of the cell. In order to achieve this, random and
regular change of the disc rotation sense (square wave or PRBS
forcing respectively) has been applied. Both square wave or PRBS
forcing with time steps around dt = 2s proved to be a good com-
promise between effectively altering the global flow while retain-
ing comparatively high Reynolds numbers. It is remarkable that
both forcing methods yield very similar results. Nevertheless, the
destruction of higher order flow modes reduces the micro scale
Reynolds numbers in the center of the cell. A solution to prevent
this may be the increase of the disc rotation speed while maintain-
ing the reversal rates.

The Doppler ultrasound velocity profiles show a clear fre-
quency cut-off in the velocity spectrum and a decrease of the cor-
relation time whereas Lagrangian tracking of tracer particles con-
firmed the robustness and slight improvement of turbulence features
in the cell center, namely the peak of the compensated second order
structure functions, the velocity spectrum or higher order moments.

It appears now possible to investigate the dependence of turbu-
lence characteristics due to modifications of the fluid properties or
in a magneto-hydrodynamic flow without a direct or indirect influ-
ence of dominant eddies. The exclusive presence of only the lowest
order pumping mode, namely the radial inward flow in the central
plane, facilitates the establishment of a controlled reference flow
compared to the constant forcing case.
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