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ABSTRACT
The paper examines various features of the premultiplied spec-

tra, the premultiplied derivatives of the second-order structure func-

tion (PMDS2) and three scalar parameters that characterize the

anisotropic or isotropic state of the various length-scale sub-ranges

within the spectra for channel flow at Reτ = 4200, generated by

Lozano-Duran and Jimenez [J. Fluid Mech. 759, 432 (2014)], with

the objective of inferring structural properties in the log-layer across

the wave-length or eddy-size spectrum. Attention is primarily fo-

cused on the intermediate layer (“meso-layer”) covering the loga-

rithmic velocity region within the range of wall-normal distance,

y+, of 100–2000. Specifically, the question is addressed of whether

the validity of the Attached-Eddy Hypothesis (AEH) in the log-

layer can be demonstrated. It is argued that the Hypothesis needs

to be reinterpreted, based primarily on the existence of a plateau re-

gion in the PMDS2, which then supports a qualified validity of the

AEH right down the lower limit of the logarithmic velocity range.

INTRODUCTION
The structure of near-wall layers has been the subject of much

research over many years, with conceptual descriptions of the At-

tached Eddy Hypothesis (AEH, henceforth) by Townsend (1980)

and Perry & Chong (1982) being important historical landmarks.

The fact that major efforts on canonical near-wall layers have con-

tinued unabated over the past two to three decades reflects the

exceptional structural complexity of these layers awaiting full in-

sight, as well the emergence as new opportunities to investigate

open questions as a consequence of outstandingly high-quality ex-

perimental and DNS data becoming available over the past decade

(Marusic et al. (2013); Smits et al. (2011); Hultmark et al. (2013);

Rosenberg et al. (2013); Jiménez & Hoyas (2008); Lee & Moser

(2015)). In particular, the availability of massive amounts of spa-

tially and temporally fully-resolved raw DNS data for fairly high

Reynolds numbers has opened new routes to investigating many sta-

tistical and structural properties of near-wall layers, with the objec-

tive of unravelling a variety of scale-interaction processes.

One subject of particular interest and attention has been the

origin and significance of energetic large-scale structures present

in the intermediate-to-outer parts of the log layer, which are the

cause of a plateau, and – at sufficiently high Reynolds number – an

outer (second) maximum, in the streamwise energy in the boundary

layer. This behaviour is illustrated by the profiles in Fig. 1, derived

from channel-flow DNS data reported by Lozano-Durán & Jiménez

(2014a) and Lee & Moser (2015), respectively.

Among many processes associated with the outer structures,

“footprinting” and “modulation” of small(er)-scale near-wall struc-

tures by outer structures, and implications arising from both pro-

cesses to the universality of near-wall turbulence, have been major

focal points of recent studies, undertaken by exploiting experimen-

tal as well as DNS data (Mathis et al. (2011); Ganapathisubramani

et al. (2012); Agostini & Leschziner (2016); Agostini et al. (2016);

Zhang & Chernyshenko (2016)).

A question that is posed by the Reynolds-number-dependent

elevation and distortion of the streamwise energy in the log-layer,

depicted in Fig. 1, is whether the validity of the AEH in this layer

can be defended, in view of the fact that the Hypothesis is asso-

ciated with a logarithmic decline of the streamwise energy away

from the wall. Townsend’s and Perry’s original interpretation was

that the AEH applies to the entire velocity log-law region. Stud-

ies consistent with this view are those of Davidson et al. (2006a,b)

and Hwang (2015). The former discusses the logarithmic behaviour

of the structure function within the range 100 < y+ < 200, in view

of the φuu(kx) ∝ k−1
x behaviour that is observed by Nickels et al.

(2005) to apply in the boundary layer at Reθ = 37500 over a similar

y+ range. Analyzing the implications of a sequence of minimal-

channel simulations, each used to isolate the characteristics of a

narrow size ranges of eddies, Hwang (2015) argues that the entire

log-law layer is populated, as suggested by Jiménez & Hoyas (2008)

and Marusic et al. (2013), by a hierarchical set of self-similar and

self-sustaining attached eddies, in line with the original AEH. How-

ever, the above interpretation appears at odds with results derived

from experimental data for high-Reynolds-number pipe flow ( Hult-

mark et al. (2013), Rosenberg et al. (2013)) and also DNS data for

channel flow at Reτ = 4200 (Lozano-Durán & Jiménez (2014a,b)),

which show that the logarithmic variation of u′u′
+

, consistent with

the k−1
x behaviour, does not apply across the intermediate portion of

the velocity log-law layer – referred to as the “meso-layer” hence-

forth – which separates the layer below y+ ≈ 100 from the outer re-

gion lying beyond y ≈ 0.5δ (around y+ = 2000 in the channel flow

considered herein). Rather, a logarithmic decay of u′u′
+

is observed

in the remote outer region of boundary layers at very high Reynolds

numbers (Hultmark et al. (2013); Rosenberg et al. (2013); Vassili-

cos et al. (2015); Vallikivi et al. (2015)), but this region is well be-

yond the log-layer and populated by “very large-scale structures”.

In this outer region, the spectrum of the streamwise energy is also

observed to follow φuu(kx) ∝ k−1
x , which is, as noted, compatible

with the logarithmic decay of u′u′
+

.

It is against the above background and controversy that the

present study set out to examine closely the structural and spec-

tral properties of a channel-flow boundary layer at Reτ = 4200,

for which extensive DNS data were generated by Lozano-Durán &

Jiménez (2014a). The primary focus of the study is on an exami-

nation of the statistical properties of sub-ranges of scales within the

pre-multiplied wall-normal spectra, and on a related analysis of the

pre-multiplied derivative of the second-order structure function, the

latter leading to a proposed alternative interpretation of the conven-

tional AEH in the intermediate layer 100 < y+ < 2000.
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Figure 1. Wall-normal distribution of the streamwise stress at :

Reτ = 4200 (red line) and Reτ = 5200 (Lee & Moser (2015)). The

dashed lines represents the variation u′u′
+
=−1.26log y++B, with

B = 12.2 and 12.7 for Reτ = 4200 and Reτ = 5200, respectively.

(a)

(b)

Figure 2. Pre-multiplied power spectrum of the streamwise fluctu-

ations, in both streamwise (a) and spanwise direction (b); at Reτ =

4200. The dotted red lines show either the relation λ+
x = 3.5y+ or

λ+
z = 7y+ = 2λ+

x .

STATISTICAL PROPERTIES OF EDDY-LENGTH-
SCALE SUBRANGES

Fig. 2 shows pre-multiplied spectra kxφuu(λx) and kzφuu(λz),
where λx and λz are the wave numbers in the streamwise and span-

wise directions, respectively. The horizontal dashed lines identify

the meso-layer, on which attention focuses. Although there is an

indication that the λx and λz locations at which the energy begins

to rise steeply vary linearly with y+, in consonance with the AEH,

neither spectral map features a well-defined constant-value plateau

within the meso-layer. However, the existence of such a plateau, im-

plying the variation φuu(kx) ∝ k−1
x or φuu(kz) ∝ k−1

z within a trian-

gular region that is bounded by λ+
x,min =Cy+ and λ+

x,max = cst (and

corresponding variations in the z− spectra), can easily be shown to

be necessary in order to satisfy the AEH-compatible logarithmic de-

cay of the streamwise energy, such as indicated in the outer region

of the meso-layer in Fig.1.

In order to shed light on the characteristics of scale sub-

ranges, some specific manipulations of the spectral maps are pro-

posed herein. Attention focuses first of regions of isotropy of

scales. Figure 3 shows two ways of highlighting such regions.

The first entails the use of compensated spectra ε−2/3k
5/3
x Φuu and

ε−2/3k
5/3
z Φuu, which are shown in figures 3(a) and 3(b), respec-

tively, where ε is a surrogate of rate of turbulence-energy dissi-

pation, defined such as ε = ωkωk/3. The red lines in the x-wise

and z-wise maps are defined, respectively, by λ+
x = 3.5× y+ and

λ+
z = 7× y+ = 2×λ+

x , while the blue lines describe, respectively,

the variations λ+
x = 3.5× (y+)1/3 and λ+

z = 7× (y+)1/3 = 2×λ+
x .

The red and blue lines bound, approximately, plateau regions char-

acteristic of near-isotropy. The second route rests on the definition

of the following “isotropy parameter”:

γ3c ≡
3|Φuu||Φvv||Φww|

|Φuu|3 + |Φvv|3 + |Φww|3
(1)

in which Φuu, Φvv and Φww are the x-wise or z-wise spectra for the

three components u, v and w, respectively. This parameter tends to

a maximum of 1 in the case of isotropy, declining to zero in the case

of a two-component or a one-component state. The maps in figures

3(c) and 3(d) show (for greater visual impact) the square of γ3c as

functions of λ+
x and λ+

z , respectively. The fact these regions of

high γ3c are, again, bounded by the red and blue lines and broadly

coincide with the near-plateau regions in the compensated spectra

supports the proposition that these regions within the meso-layer

characterize detached eddies.

An analogous route to that taken above is adopted next to delineate

regions of elevated anisotropy. Thus, a parameter that identifies the

dominance of the streamwise component over the two others is:

γ1c
u ≡

|Φuu|
2

|Φuu|2 + |Φvv|2 + |Φww|2
(2)

This parameter tends to 1 when the energy is increasingly contained

in the Φuu spectra, and diminishes when the anisotropic state de-

parts from the one-component condition. Maps of (γ1c
u )3 in the x

and z directions (the cubic exponent designed to accentuate gradi-

ents in the maps) are shown in figures 4(a) and 4(b), respectively.

Both maps reveal that, within the meso-layer, the dominance of the

streamwise component is confined to the larger scales beyond the

boundaries identified by the red lines, and this is the attached-eddy

region, as will be argued in the following Section. In fact, the most

pronounced regions in figure 4 pertain to scales which are the sub-

ject of many studies that deal with elongated large-scale structures
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(a)

(b)

(c)

(d)

Figure 3. Characterisation of isotropy across eddy-size range:

(a) compensated spectra ε−2/3k
5/3
x Φuu, (b) compensated spectra

ε−2/3k
5/3
z Φuu, (c) and (d) maps of the square of the “isotropy pa-

rameter” (γ3c)2, derived from the streamwise and spanwise spectral

components. The red lines show either the relation λ+
x = 3.5y+

or λ+
z = 7y+ = 2λ+

x and the blue lines show either the relation

λ+
x = 3.5(y+)1/3 or λ+

z = 7(y+)1/3 = 2λ+
x .

(a)

(b)

(c)

Figure 4. Characterisation of anisotropy due to dominance of

streamwise energy u′u′
+
>> v′v′

+
,w′w′+: (a) maps of (γ1c

u )3 in

streamwise direction, (b) maps of (γ1c
u )3 in spanwise direction and

(c) cross-spectrum average of γ1c
u . Red and blue dotted lines: see

caption of figure 3.

in the outer part of the log-layer (Marusic (2001)). Figure 4 also

contains a y+-wise profile of the normalised streamwise energy, and

this provides confirmation of the existence of energetic structures in

the outer layer around y+ ≈ 500. Reference to the (γ1c
u )3 distri-

bution along the dotted black line at y+ = 500 clearly shows that

this peak in streamwise energy is associated with structures having

wavelengths of order λ+
x & 8000 and λ+

z & 4000. The near-wall

energy peak, at y+ ≈ 10 is also clearly brought out in the (γ1c
u )3

maps, in which a maximum at λ+
z ≈ 100 is evidently indicative of

the strong small-scale streaks in the buffer layer.

The maps shown in figures 3 and 4 contain small-scale ranges
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Figure 5. Sub-ranges in spectral map having distinct turbulence

characteristics (1c: dominance of streamwise component; 2c: dom-

inance of cross-flow components).

to the left of the blue lines λ+ ∝ (y+)
1
3 which neither comply with

isotropy nor with one-component dominance. The scales in ques-

tion are not far from the Kolmogorov range λ+ ∝ (y+)
1
4 . The prop-

erties of these ranges have also been investigated, for example, by

way of a third anisotropy parameter, γ2c
i j , defined as:

γ2c
i j ≡

2|Φii||Φ j j|

|Φuu|2 + |Φvv|2 + |Φww|2
(3)

,

identifying the dominance of two normal components, i 6= j,

over the third, and thus highlights the range where the anisotopic

turbulence is characteristic of two-component turbulence. The re-

sults of this part of the study are not central to the key arguments and

conclusions presented below, and they will therefore be reported in

a more comprehensive paper to follow.

The eddy-scale sub-regions identified on the basis of the above

analysis are shown in Fig.5. Of primary relevance and interest is

sub-region C, characterized by a dominance of the streamwise en-

ergy component, relative to the two others, in the region in which

the length scales of the structures is relatively large. Eddies hav-

ing smaller length scales, located within region B, are close to

isotropic, in terms of energy, do not carry shear stress and are there-

fore deemed “detached”. In contrast, the state in region C is charac-

terized by anisotropy, with streamwise energy dominating, and the

eddies are affected by shear, carry shear stress and thus comply with

the notion of “attached” eddies.

THE ATTACHED EDDY HYPOTHESIS
In the absence of a clear region of Φuu ∝ k−1, convention-

ally associated with the Townsend-Perry AEH, attention is directed

to an investigation of maps of the pre-multiplied derivatives of

the second-order structure function (“PMDS2”, henceforth) δ ×
dS2,u(δ )

dδ
, where δ is the separation. The structure-function analysis

is performed over both directions, x and z separately; in the stream-

wise direction, S2,u(y,δ ) is defined as
〈

[u(y,x)−u(y,x+δ )]2
〉

z,t
,

the subscripts z, t identifying homogeneous averaging directions.

Such maps are shown in Fig. 8. The rationale of focusing on

these maps arises from the observation by Davidson et al. (2006a,b)

that there is a close relationship between S2,u and the pre-multiplied

spectra. However, the advantage of the PMDS2 is that plateau re-

gions in these map are more pronounced and thus more readily iden-

tifiable as being associated with the AEH than in the corresponding

spectral maps.

The PMDS2 expresses the contribution to the energy associ-

ated with eddies having a length δ . This is equivalent to, but not

the same as, the premultiplied power spectra (kΦuu) . Given a con-

stant level of the PMDS2, which is consistent with a k−1 varia-

tion of the spectrum (Davidson et al), integration then immediately

yields a logarithmic variation of S2,u(δ/y) and thus a logarithmic

dependence u′u′
+
(δ/y) for δ = L. There is, therefore, a mutu-

ally consistent linkage between a k−1 spectrum, a constant level

of the PMDS2, the logarithmic variation of u′u′
+

and the AEH. It

is not surprising, therefore, to observe a striking similarity between

the pre-multiplied power spectra and the corresponding PMDS2, as

emerges upon comparing the maps in figures 7(a) and (b) with those

in figure 2. The relevant test in respect of the AEH is thus whether

δdS2,u/dδ = cst.

In the previous Section, it was proposed that the meso-layer

may be divided into three physically different domains - A, B and

C (figure 5). These are associated, respectively, with spectra of the

form φuu ∼ ε1/3k
−7/3
x , φuu ∼ ε2/3k

−5/3
x and φuu ∼ k−1

x , the last in-

dicative of the AEH. As argued by Pope (2001), a power-law spec-

trum Φ(ω) ≈ C1ω−p can be related to the second-order structure

function Sp(δ ) ≈C2δ q with p = q+1, valid only under the condi-

tion that p > 1. In accordance with the AEH, p = 1, in which case

Davidson et al. (2006a,b) show that S2(δ ) ≈ C3 log(δ )+ B. The

implications for subregions A, B and C in figure 5 are therefore,

respectively:

region A: δxdS2,u/dδx ∼ ε1/3δ
4/3
x

region B: δxdS2,u/dδx ∼ ε2/3δ
2/3
x

region C:, δxdS2,u/dδx = cst

Figure 6(a) shows a map of δx
dS2,u

dδx
compensated by

ε−1/3δ
−4/3
x . As expected, on the basis of the above statements on

the spectra, there is a “plateau” in region A, bounded by the blue

line. Figure 6(b) relates to the isotropic state through the augmen-

tation by ε−2/3δ
−2/3
x , along with a normalized version thereof in

figure 6(c), in which the levels at any y-value are normalised by the

maximum at that level. Both maps bring to light the plateau in re-

gion B in the meso-layer, bounded by the blue and red lines. This

region is narrow in the lower part of the layer, but broadens as y in-

creases – i.e. the inertial range becomes wider in the outer portion

of the log-layer. These features concur with those in the map in fig-

ure 4 showing the parameter (γ3c)2 (see equation 1). The PMDS2

maps shown in figure 7(a) and (b) – especially the latter – include

an oblique band to the right of, and parallel to, the red line, i.e.

region C, in which the condition δxdS2,u/dδx = cst is met, at least

approximately. Although this provides some support for the validity

of the AEH in the meso-layer, the absence of a well-defined plateau

is counter-indicative.

Evidence in support of the AEH is provided by features con-

tained in the maps of the PMDS2, figures 7(a) and (b), in which

two regions are highlighted: a blue triangular region and a more re-

stricted red trapezoidal region, both covering the meso-layer. If a

perfect plateau in the PMDS2 and the corresponding pre-multiplied

spectra existed within the triangular region, the implications regard-

ing the AEH would be those shown in schematic 8(a). In this con-

ceptual schematic, a sequence of four attached eddies, e1 − e4, are

given, whose energy rises with height such that the eddies collapse

if the energy density and height are normalised by λ = 1/k = y i.e.,

the eddies are self-similar. If these eddies exist in the triangular re-
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(a)

(b)

(c)

(d)

Figure 6. Turbulence state, premultiplied derivative of the struc-

ture function compensated by : (a) ε−1/3δ
−4/3
x , (b) ε−2/3δ

−2/3
x ;

(c) the compensated δx
dS2,u

dδx
defined for the isotropic case is divided

by the maximum value at each y-location and (d) isotropic parame-

ter (γ3c)2. Red and blue dotted lines: see caption of figure 3.

(a)

(b)

Figure 7. Maps of PMDS2 with δ taken in streamwise (a) and

spanwise (b) direction, respectively.

gion of the spectrum, within which kΦuu = cst =A, limited between

λmin = y and λmax = cst, it follows that the energy u′u′ varies log-

arithmically with y. The implication is thus that, at any y-location,

only eddies larger than the attached eddy at that height contribute to

the energy, and that all such eddies contribute at the level kΦuu = A.

As is evident from figure 7(a) and (b), there is no clear plateau

within the triangular region. However, there is an approximately

constant level within the red trapezoidal region. One consequence

of this restricted plateau region is that the logarithmic variation of

u′u′
+

only applies in the upper portion of the meso-layer, above the

dotted line in figures 7(a) and (b). Below that line, the linear varia-

tion of the parallel boundaries of the trapezoid, when transcribed to

the pre-multiplied spectra, implies a constant level of u′u′
+

, broadly

in line with the variations shown in figure 1.

Figure 8(b) now pertain to the trapezoidal domain shown in fig-

ures 7(a) and (b). The upper part of this domain is triangular, which

thus conforms to the relationship shown in figure 8(a). Figures 8(b)

relate to the parallelogram below the triangular region. As before,

the normalisation kΦuu =A applies, but only over a restricted height

of the eddies. Below the height defined by the lower line of the par-

allelogram λmax(y), the energy of the eddy declines rapidly. If, next,

u′u′(y) is evaluated by integration between the parallel lines λmin(y)
and λmax(y) – the lines bounding the parallelogram – the result is a

plateau of u′u′.
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(a)

 

(b)

Figure 8. Conceptual representation of AE self-similarity through

the meso-layer : velocity profile associated to (a) the original AEH

and (b) augmented AEH.

This representation differs substantially from the conventional

AEH, but does imply a self-similar set when scaling with h and λ is

effected. It is thus arguable that the plateau region within the trape-

zoidal region in figures 7(a) and (b) is fundamentally consistent with

the AEH even though there is no clearly defined triangular plateau

region. This interpretation also explains, at least in principle, the

plateau in the u′u′ profile, by virtue of the fact that integration of

the premultiplied spectra across the λ range within the lower por-

tion of the trapezoidal section yields a constant level of u′u′.

CONCLUSIONS
The examination of the streamwise and spanwise structure

functions has revealed the existence of a trapezoidal (rather than tri-

angular) region of nearly constant value spanning the entire meso-

layer, 100 < y+ < 2000, not observed in the associated premulti-

plied spectra. This led to the proposition of an augmented form

of the Attached Eddy Hypothesis covering the meso-layer, thus ac-

commodating the plateau region in the streamwise- energy profile,

with its centre being at y+ ≈ 300.
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Lozano-Durán, A. & Jiménez, J. 2014b Time-resolved evolution

of coherent structures in turbulent channels: characterization of

eddies and cascades. Journal of Fluid Mechanics 759, 432471.

Marusic, I. 2001 On the role of large-scale structures in wall turbu-

lence. Physics of fluids 13, 735.

Marusic, Ivan, Monty, Jason P, Hultmark, Marcus & Smits, Alexan-

der J 2013 On the logarithmic region in wall turbulence. Journal

of Fluid Mechanics 716, R3.

Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner-

outer model for streamwise turbulence statistics in wall-bounded

flows. Journal of Fluid Mechanics 681, 537566.

Nickels, TB, Marusic, I, Hafez, S & Chong, MS 2005 Evidence

of the k−1
1 law in a high-Reynolds-number turbulent boundary

layer. Physical review letters 95 (7), 074501.

Perry, AE & Chong, MS 1982 On the mechanism of wall turbu-

lence. Journal of Fluid Mechanics 119, 173217.

Pope, Stephen B 2001 Turbulent flows.

Rosenberg, BJ, Hultmark, Marcus, Vallikivi, M, Bailey, SCC &

Smits, AJ 2013 Turbulence spectra in smooth-and rough-wall

pipe flow at extreme Reynolds numbers. Journal of Fluid Me-

chanics 731, 4663.

Smits, Alexander J, McKeon, Beverley J & Marusic, Ivan 2011

High-Reynolds number wall turbulence. Annual Review of Fluid

Mechanics 43, 353375.

Townsend, Albert A 1980 The structure of turbulent shear flow.

Cambridge university press.

Vallikivi, M., Ganapathisubramani, B. & Smits, AJ 2015 Spectral

scaling in boundary layers and pipes at very high Reynolds num-

bers. Journal of Fluid Mechanics 771, 303.

Vassilicos, JC, Laval, J-P, Foucaut, J-M & Stanislas, Michel 2015

The streamwise turbulence intensity in the intermediate layer of

turbulent pipe flow. Journal of Fluid Mechanics 774, 324341.

Zhang, Chi & Chernyshenko, Sergei I 2016 Quasisteady quasiho-

mogeneous description of the scale interactions in near-wall tur-

bulence. Physical Review Fluids 1 (1), 014401.

6A-5


