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ABSTRACT
Laminar separation bubbles develop over many blades

and airfoils at moderate angles of attack and Reynolds num-
bers ranging from 104 to 105. More accurate simulation
tools are necessary to enable higher fidelity design opti-
mization for these airfoils and blades as well as to test flow
control schemes. An equivalent problem is formulated by
imposing suitable boundary conditions for flow over a flat
plate to avoid numerical and mesh generation issues. LES
of such a flow were performed at drastically reduced res-
olution using a spectral solver to unambiguously assess the
accuracy of LES in which filtering is used to replace explicit
subgrid-scale (SGS) modeling – a filter (F1), a weaker filter
(F2), and the truncated Navier-Stokes with automatic filter-
ing (TNS) – and compare it to the dynamic Smagorinsky
model. The performance of each LES is evaluated against
benchmark DNS data focusing on pressure and skin friction
distributions, which are critical to airfoil designers. TNS
and F2 results confirm that filtering can act as an apt substi-
tute for explicit SGS models, whereas the poor predictions
of F1 circumscribe the possible dangers of grid and filter-
width dependence of this approach.

INTRODUCTION
The flow over many blades and airfoils at moderate

angles of attack and Reynolds numbers ranging from 104

to 105 undergoes separation-induced transition due to the
adverse pressure gradient generated by surface curvature,
forming a laminar separation bubble. This phenomenon can
favorably increase lift-over-drag ratio on the wings of small
unmanned aircraft by promoting early transition to turbu-
lence and flow reattachment. In turbine flows, it causes
unsteady structural loading which can lead to fatigue and
reduce blade lifecycle. Ways to control or delay the onset
of separation, transition and reattachment for these applica-
tions are sought at the design stage.

An equivalent problem is formulated by imposing suit-
able boundary conditions for flow over a flat plate to avoid
numerical and mesh generation issues. Spalart & Strelets
(2000) tested a number of Reynolds-averaged Navier-
Stokes (RANS) turbulence models for such a laminar
separation bubble flow. Spalart-Allmaras results recov-
ered the peak negative skin friction value and location,
but over-predicted the reattachment point. Other tur-
bulence models transitioned and reattached early. Peak
negative skin friction predicitons varied widely from one

model to the next, and no model recovered the tur-
bulent skin friction downstream of reattachment of the
DNS. Howard et al. (2000), Hadžić & Hanjalić (2000), and
Papanicolaou & Rodi (1999) tested other RANS turbulence
models with modifications to improve transition prediction
for similar problems. The models predicted the location of
transition and reattachment more reliably, but their predic-
tions for the peak negative skin friction and skin friction lev-
els downstream of reattachment differed significantly from
model to model and generally did not recover DNS values.

More accurate simulation tools are necessary to en-
able higher fidelity design optimization of airfoils and
blades operating at moderate Reynolds numbers as well
as to test flow control schemes. Cadieux et al. (2014) and
Castiglioni et al. (2014) recently demonstrated that fast and
accurate LES of laminar separation bubble flows are at-
tainable with as low as 1% of DNS resolution. The fo-
cus of this work is to investigate whether the proposi-
tion made by Rizzetta et al. (2003), Bogey & Bailly (2006),
Minguez et al. (2008), and Tantikul & Domaradzki (2010)
that explicit filtering or damping affecting only the smallest
resolved scales can act as an effective subgrid-scale (SGS)
model holds for highly under-resolved simulations of a lam-
inar separation bubble flow over a flat plate. The perfor-
mance of different explicitly-filtered simulations and LES
with the dynamic Smagorinsky model is compared to DNS
benchmark data provided by Spalart & Strelets (2000). Fo-
cus is placed on accurately predicting time-averaged pres-
sure (Cp) and skin friction (C f ), which are of critical impor-
tance to airfoil and blade designers. Mean and RMS veloc-
ity profiles are also considered.

METHOD
The computational setup of Spalart & Strelets (2000)

to simulate a laminar separation bubble flow over a flat plate
using suction from the top is used and described in figure 1.
The Reynolds number at the location of the peak suction
velocity is Rex = 105. The vertical suction velocity is spec-
ified as

V (x) = aexp(−[(x−xs)/(0.24Y )]2), (1)

where a is the peak velocity and xs is its streamwise loca-
tion. The resulting separation bubble is sensitive only to the
upper-wall boundary conditions through the nominal flow
deceleration parameter S = 1

YU0

∫
V (x)dx. Using the height
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Y to non-dimensionalize all relevant lengths henceforth, the
parameters in the equations above are set such that xs = 3,
S = 0.3 and the Reynolds number at xs is Rexs = 105, giving
a ≈ 0.7U0 and ReY = Rexs/3. These choices are driven by
the requirement that the flow separates naturally, without
additional forcing mechanisms that were otherwise neces-
sary in the DNS by Alam & Sandham (2000). This setup
also ensures a favorable comparison with pressure distri-
butions and the Reynolds number based on bubble length
(Re = 6.7× 104) of laminar separation bubble flows seen
on the suction side of airfoils.

Figure 1: Physical domain, boundary and inlet con-
ditions used to investigate laminar separation bubble
flow.

Kravchenko & Moin (1997) showed that numerical
dissipation due to derivative and flux approximations in
highly under-resolved simulations can become of the same
order of magnitude as the SGS dissipation provided by
explicit models. Stabilizing filters can also have a sim-
ilar impact on results and adding an explicit SGS model
may deteriorate results as demonstrated in Cadieux et al.
(2014). A Fourier-Chebyshev pseudo-spectral solver with
no stabilizing filter is thus chosen to unambiguously eval-
uate the performance of different filtering approaches and
SGS models without numerical dissipation. The incom-
pressible LES equations are integrated in time using a clas-
sic pressure-correction method outlined in Guermond et al.
(2006). Boundary conditions that lead to O(∆t3) accuracy
are chosen based on the Zang-Hussaini algorithm described
in Canuto et al. (2007). Algebraic mapping is used to clus-
ter points inside the boundary layer and away from the top
wall. Sponge regions spanning x = 0.25 to x = 0.45 and
x = 8.7 to x = 10 are used to recycle the outflow back to
the desired Blasius inflow profile. The physically represen-
tative region of the computational domain spans x = 0.5 to
x = 7.5. Suction from the top and blowing at the wall in-
duces a 25% deceleration in the mean flow and ensure that
mass is conserved through the global pressure-correction
step. Blowing through the wall severely limits the CFL
restriction, increasing our computational time from a few
hours to one day. It also removes any possibility of implicit
filtering in time due to large time steps.

If the small scales of turbulence are responsible for
kinetic energy dissipation, filtering the smallest resolved
scales at each time step can act as an effective way to in-
troduce such dissipation where it might otherwise be neg-
ligible – as it is when using high-order solvers. The un-
derlying problem of using filtering to replace a SGS model
then becomes defining a filter operation and its length scale
such that it provides the correct amount of dissipation for
different grids and different flows in the same way that

explicit SGS models like the dynamic Smagorinsky are
deemed universal. Despite this difficulty, explicitly-filtered
LES with no models, also called implicit LES (or ILES),
have had success in a number of applications detailed in
Rizzetta et al. (2003) and Bogey & Bailly (2006), and more
recently laminar separation bubble flows as demonstrated
in Cadieux et al. (2014). To investigate this alternative ap-
proach to LES, two low-pass filters F1 and F2 consist-
ing of the product of an approximate deconvolution filter
QN ≈ G−1 with filter kernel G as described in Stolz et al.
(2001) and Tantikul & Domaradzki (2010) are implemented
in physical space and used at every time step as a replace-
ment for a SGS model:

QNG = I − (I −G)N+1. (2)

N = 5 is chosen such that both filters only attenuate scales
smaller than ∆ = 2∆x. Filter F1 is defined as Q5G1(∆x)
where the kernel G1 is a simple three point filter:

G1(∆x)∗ f (x) ≈ 1
8

f (x−∆x)+
3
4

f (x)+
1
8

f (x+∆x). (3)

The second, weaker filter F2 is defined similarly as
Q5G2(∆x) where the kernel G2 is designed to remove less
energy from the small resolved scales:

G2(∆x)∗ f ≈ 1
12

f (x−∆x)+
5
6

f (x)+
1

12
f (x+∆x). (4)

The filter weights are adjusted for the non-uniform vertical
spacing using quadratic interpolation in all cases.

The truncated Navier-Stokes with automatic filtering
developed by Tantikul & Domaradzki (2010) takes the idea
of explicitly-filtered LES further. It achieves grid and filter
size independence by only applying the filtering operation
when the ratio of kinetic energy contained in the smallest
resolved scales to that contained in the large resolved scales
exceeds computed theoretical values. The ratio of energy
removed I(∆x)/I(2∆x) by two test-filters with filter widths
∆ = ∆x denoted by the tilde and ∆ = 2∆x denoted by the hat
is computed as follows

I(∆x)
I(2∆x)

=
∫

V

E − Ẽ

E − Ê
dV (5)

≈
∫ Y

0

〈
∑3

i=1
1
2 (ui − ũi)(ui − ũi)

∑3
i=1

1
2 (ui − ûi)(ui − ûi)

〉
(y)dy (6)

ũi = (Q5G1(∆x))∗ui (7)

ûi = (Q5G3(2∆x))∗ui (8)

G3(2∆x)∗ f ≈ 1
4

f (x−∆x)+
1
2

f (x)+
1
4

f (x+∆x). (9)

When this ratio exceeds values obtained for a typical dis-
sipation, inertial, or Batchelor energy spectrum using the
same filters – 0.007 to 0.009 from theory as calculated by
Tantikul & Domaradzki (2010, 2011) – the filter Q5G1(∆x)
is applied to the primary variables in physical space to re-
move this energy imbalance. Using this criterion, the fil-
ter is applied automatically at varying intervals centered
around 200 time steps for the simulation results presented
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Table 1: Resolution and parameters for LES cases and
DNS Spalart & Strelets (2000).

DNS 1% LES

Ntotal × 106 14.7 0.18

% of DNS 100 1.25

∆x+ at x = 7 12 54

∆y+ at x = 7 ≤1 0.27

∆z+ at x = 7 6.3 34

here, corresponding to approximately 0.5% of one non-
dimensional time unit t = t∗ U0

Lx
.

To serve as a baseline comparison, the dynamic
Smagorinsky model is implemented following the descrip-
tion in Sagaut (2006). Simpson’s rule is used as the test-
filter in the dynamic procedure:

f̂ (x)≈ 1
6

f (x−∆x)+
2
3

f (x)+
1
6

f (x+∆x). (10)

Spatial averaging in all directions using a three-point stencil
is used in tandem with clipping to avoid rapidly oscillating,
or negative values of the dynamic constant.

RESULTS
LES of a laminar separation bubble over a flat plate

were performed at 1% of the corresponding DNS bench-
mark resolution. Two explicitly-filtered LES with approx-
imate deconvolution filters using different weights are per-
formed (F1, F2), along with a truncated Navier-Stokes sim-
ulation with automatic filtering (TNS). A simulation with
the dynamic Smagorinsky model (DSM) is performed to
compare the performance of filtered LES to LES with a
SGS model. Simulations are started from the same lam-
inar initial conditions and are run until turbulent flow is
well established downstream of reattachment before start-
ing to collect statistics. Results are time-average over 40
non-dimensional time units t = t∗ U0

Lx
, well beyond the point

of reaching averaging-period independence. Parameters for
these simulations are summarized in Table 1.

At this coarse resolution, the strong damping provided
by the filter in F1 results restricts any generated turbulence
to quasi-2D behavior. The obtained laminar separation bub-
ble has a clear shedding frequency and large change in size
bearing many similarities to the equivalent 2D problem.
This is visible in its pressure and skin friction curves shown
in figures 2a and 2b: the expected sharp changes near x = 4
are smeared from x = 3 to x = 5. LES with the DSM under-
predicts the peak negative skin friction and reattachment
point by 17% and 4.4% respectively as evidenced in fig-
ure 2b. It deviates from DNS results downstream of x = 3,
resulting in a mean velocity profile at 3.5 with a stronger
reverse flow near the wall visible in figure 6a. Despite this
deviation, it recovers the turbulent skin friction downstream
of reattachment very accurately. The TNS and F2 simula-
tions capture the peak negative skin friction with less than
4% error, but over-predict the skin friction immediately af-
ter reattachment by approximately 10%. TNS and F2 also

recover the mean velocity profile at x = 3.5 shown in figure
6 more accurately than the DSM.

The average SGS dissipation contribution −τSGS
i j S̄i j of

each model and filter is shown in figure 4. Notice that the
strongest contributions for all LES are near x = 3.5 where
the separated shear layer breaks up as is visualized in figure
5 using contours of spanwise vorticity. The effective turbu-
lent eddy viscosity reaches νSGS ≈ 10ν there for the DSM.
νSGS then decreases until it is O(ν) at reattachment, and fur-
ther decreases downstream in the turbulent boundary layer.
As expected, the models and filters are not active in the lam-
inar and freestream region, but do have some impact inside
the separated shear layer as early as x = 2.5, corresponding
to the earliest non-zero turbulent fluctuations in v′ as plot-
ted in figure 3b. The average SGS dissipation provided by
the different filters (TNS, F1, F2) is estimated by summing
the energy removed each time the automatic filtering opera-
tion is triggered as denoted by tm over one non-dimensional
time unit t = t∗ U0

Lx
= Nt∆t for which the filter is triggered

M ≈ Nt/200 times for TNS, and M = Nt for F1 and F2:

−〈τSGS
i j S̄i j〉 ≈

1
Nt∆t

M

∑
m=1

[
E − Ẽ

]
t=tm

(11)

=
1

Nt∆t

M

∑
m=1

[
3

∑
i=1

1
2
(ui − ũi)(ui − ũi)

]

t=tm
(12)

This estimate is not representative of the dynamics of the
TNS approach, but it would seem to indicate that its av-
erage dissipation contribution is one order of magnitude
smaller than the DSM. The maximum effective viscosity of
the TNS approach is O(ν) and is located aft of x = 3.5.
Its downstream location and negligible contributions before
x = 3 may explain why TNS results better capture the onset
of the peak negative skin friction. The dissipation due to
the filter F2 is even smaller, which leads to its slightly later
reattachment point seen in the second zero crossing of its
C f curve in figure 2b, and its consistent over-prediction of
v′max immediately downstream of reattachment in figure 3b.
Only the filtered simulations TNS and F2 accurately cap-
ture the peak u′max and v′max in figure 3. The higher viscos-
ity in the DSM damps these fluctuations excessively until
the flow reattaches and a turbulent boundary layer devel-
ops. The effective numerical viscosity due to the F1 filter is
of O(ν) over a much larger domain spanning x = 3 to x = 5
explaining previous discrepancies seen in C f and Cp. Its
much larger u′max is due to the much stronger 2D shedding
causing large periodic changes in the location of transition
to turbulence.

CONCLUSIONS
LES of a laminar separation bubble flow over a flat

plate were performed at 1% of the benchmark DNS reso-
lution of Spalart & Strelets (2000) using a spectral solver
to unambiguously assess the performance of explicitly fil-
tered LES and compare it to the dynamic Smagorinsky
model. The truncated Navier-Stokes (TNS) approach re-
covered the benchmark DNS pressure and skin friction dis-
tributions most accurately, followed closely by the sharper
explicitly-filtered LES (F2) and the dynamic Smagorinsky
model (DSM). The good performance of the TNS and F2
LES provides further support to the concept that filtering
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Figure 2: Cp and C f . Circles: DNS by Spalart & Strelets (2000); red dash-dotted line: DSM; teal dashed line: F1;
blue line with diamonds: F2; green line: TNS.
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Figure 3: Maximum RMS velocity. Circles: DNS by Spalart & Strelets (2000); red dash-dotted line: DSM; teal
dashed line: F1; blue line with diamonds: F2; green line: TNS.

can act as an apt replacement for a subgrid-scale model.
The poor performance of the F1 explicitly-filtered LES as
compared to TNS and F2 is indicative of the dangers as-
sociated with the dependence of this approach on the grid
and filter size. The automatic filtering criterion framework
developed for TNS, wherein filtering is only applied when
necessary based on the ratio of energy of the small to the
large scales, should help explicit filtering as an SGS model
become a more universally applicable and grid-independent
methodology. If a solver requires filtering for stability or to
remove aliasing error as is common in high-order discretiza-
tions, the automatic filtering approach can still be used with
a stronger filter to provide further dissipation if and when
necessary, such that the combined method becomes grid-
independent.
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Figure 6: Profiles in LES (lines), and in DNS (symbols). Blue line, black circles: U ; green dashed line, black
diamonds: u′/u′max. From left to right, plots spaced by 1.5: x = 2.5, x = 3.5.
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