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ABSTRACT
An experimental investigation was carried out on the

effect of unsteady periodic pulsed perturbation on a sepa-
rated laminar shear layer. Time resolved PIV was used to
characterize a backward-facing step flow (Reh = 3600), pe-
riodically actuated by a nanosecond DBD plasma actuator.
The forcing frequency ranges between 20 and 200Hz, and
it is the only parameter investigated.

Results indicate a decrease of reattachment length with
increasing frequency, reaching a minimum at 160Hz. Fre-
quency analysis and linear stability theory have shown that
a perturbed flow adjusts itself to a new stable state. Proper
orthogonal decomposition (POD) has revealed that the ef-
fect of a pulsed perturbation is to redistribute energy among
modes. Therefore, a pulsed periodic actuation of a laminar
shear layer promotes the development of large structures
due to inviscid-viscous interaction. These convect down-
stream resulting in a mean flow deformation which causes a
change of stability. New unstable frequencies are excited
and promote the redistribution of energy among modes.
This ultimately affects the efficiency of actuation in pro-
moting transition from laminar to turbulent flow.

INTRODUCTION
Controlling a fixed-point separated flow cause by sur-

face aberrations or adverse pressure gradients is very impor-
tant topic for many engineering applications. This gener-
ated a great number of studies numerical, theoretical and ex-
perimental (Michalke, 1965; Armaly et al., 1983; Huerre &
Monkewitz, 1985; Blackburn et al., 2008) and many differ-
ent flow control techniques for fixed-point separation were
developed (Bhattacharjee et al., 1986; Hasan, 1992; Roos
et al., 1986; Kim et al., 1980). To some extend, backward-
facing step flow mimics such scenario.

Armaly et al. (1983) observed a reattachment length
after the step being dependent on the Re number. More
specifically, a turbulent separated flow experiences a shorter
separation length, being more energetic so capable of afford
a more efficient expansion after the step.

From a numerical point of view, it is found in litera-
ture (Huerre & Monkewitz, 1985; Balsa, 1988; Lie & Ri-
ahi, 1988) that BFS flows are unstable at very low Renum-
ber, i.e. few millimetre after the step, even at very low free
stream velocities. Kaiktsis et al. (1991) comparing numer-
ical prediction and experimental data found a discrepancy
attributed to the distortion of flow. This phenomenon de-
livers a change of the stability of the flow itself. It seems
that a shear layer transitioning from laminar to turbulent
would adapt itself to new state, so changing its own stabil-
ity. Balsa (1988) have studied the receptivity of free shear
layer subject to pulsed periodic excitations. They postu-
lated that co-flowing shear layers are convectively unstable
and spatial instability modes always arise in them because
of periodic excitation. Such flow scenario is identical to the
one investigated in this work. Therefore, results from Balsa
(1988) have been used in order to validate the in-house LST
solver used in this work. Kaiktsis et al. (1996) have in-
vestigated the stability of a backward facing step using a
bi-dimensional Direct Numerical Simulation together with
local and global stability analysis under impulsive forcing.
They found that sustained external perturbation can make
the stability of a shear layer time-dependent, i.e. make the
flow globally unstable.

Several attempt of flow control over a backward fac-
ing step are present in literature, mainly for turbulent in-
flow conditions (Bradshaw & Wong, 1972; Kim et al., 1980;
Bhattacharjee et al., 1986; Roos et al., 1986; Chun & Sung,
1996). Few example of laminar separated flow control are
present (Roos et al., 1986; Bechert & Stahl, 1988; Hasan,
1992; Wengle et al., 2001). It seems important to make dis-
tinction between the kind of inflow boundary layer since
there are evidences of an effective flow control when tur-
bulent inflow boundary layer is excited with a frequency
equal to the naturally most unstable frequency present into
the shear layer (Chun & Sung, 1996). Such result looks
not to be consistent when the inflow condition is laminar.
The nature of the stability of a free laminar shear layer un-
der the effect of controlled periodic perturbations seems to
be strongly coupled with the frequency of actuation itself
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(Hasan, 1992), changing the stability of the base flow (Kaik-
tsis et al., 1996).

As already stated at the beginning of this introduc-
tion, the importance of designing flow control strategies
and techniques capable of controlling separated shear lay-
ers is of primary importance in many engineering applica-
tions. Although a vast selection of previous work has been
directed towards this goal, several aspects remain unclear.
More specifically, the effect of actuation is producing in
many cases a mean flow deformation effect which has sig-
nificant influence on the development of new stability char-
acteristics of the flow. A simple question one might pose
is: ”Should the optimal actuation frequency be based on the
stability characteristics of the forced or non-forced flow?”.
Similar considerations involve the actual spatial location of
the forcing. In most engineering applications the actuator
is envisaged upstream of the breakdown region. Yet the
forced instability modes will result in breakdown further
downstream where different stability characteristics might
apply. A second question would be: ”Should the optimal
control frequency be based on the stability of the flow at the
actuator position, or further downstream?”.

In order to answer these questions flow over a BFS is
experimentally investigated. Such geometry is selected due
to its capability of mimicking the topology of massively
separated flows such as the ones typically encountered on
airfoils at large angles of attack. The stability of a laminar
flow past a BFS under the effect of periodic pulsed pertur-
bations is characterised with the use of time resolved PIV.
A super-elliptical leading edge assures the development of
a stable laminar boundary layer upon the surface of the at
plate (Lin et al., 1992), with the subsequent downstream
formation of a free shear layer. A flush mounted ns-DBD
plasma actuator is selected in order to introduce into the
flow a controlled pulsed and periodic thermal disturbance
(Correale et al., 2014). Time resolved velocity measure-
ments allow frequency as well as POD analysis. Thus, in-
vestigation on the dependency of the actuation frequency
coupled with the energy redistribution between the unsta-
ble modes for each actuated as well as non-actuated case is
performed. LST is applied by solving the Orr-Sommerfeld
equation with an in-house developed solver (Van Ingen &
Kotsonis, 2011).

EXPERIMENTAL SET-UP
Experiments were carried out in a low speed open loop

facility with a maximum free stream velocity of 40m/s with
a free stream turbulence intensity of about 0.1% at maxi-
mum speed. The model used for the experiments was a flat
plate with a super-elliptical leading edge and a backward
facing step 150 mm downstream from the leading edge. A
groove allows flush mounting a nanosecond DBD plasma
actuator, as shown in figure 1.

Two components planar Time Resolved Particle Image
Velocimetry (2C-TR-PIV) measurement technique is em-
ployed. The used camera (LaVision Imager pro HS 4M)
has a 4megapixel (2016× 2016pixels), 12bit CCD sensor.
A Nikon 105mm macro objective was used, set at f # = 5.6.
The light source was a Darwin-Duo laser by Quantronix,
with an average output of 80W at 2kHz. A combination
of cylindrical and spherical lenses were used in order to
form a light sheet approximately 0.8mm thick, located at
the midspan of the model. Seeding was provided by a
SAFEX Twin-Fog smoke generator device yielding parti-
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Figure 2. Shape factor H (� symbols) for all the investi-
gated cases. A dashed horizontal line represents the theo-
retical value of H for the Blasius solution. fact indicates the
frequency of flow actuation.

cles of about 1m diameter. The field of view lies in the x-y
plane (figure 1), covering about 12mm upstream the BFS
and 100mm downstream the step resulting in a window of
112×32mm2 . Double frame images were acquired at a fre-
quency of 2kHz for 2.5s. The flow velocity was kept at
about 5m/s resulting in Reh = 3600. The final interrogation
window 16pixel2 with 75% overlap. Final vector density
was 3.375vector/mm.

RESULTS
Frequency of flow actuation is the only parameter in-

vestigated. Pulse voltage is kept constant at 10kV . Fre-
quencies investigated are 20,40,80,120,140,160,180 and
200Hz. Acquisitions are carried out at 2kHz for 2.5s. With
such acquisition configuration a set of 5000 double frames
are acquired for each case under study. In order to avoid
low-frequency oscillation of the mean flow typically asso-
ciated with the seize of actuation (Rist et al., 1996; Marxen,
2005) the flow was kept actuated for the whole duration of
the PIV acquisition. Free stream velocity was kept constant
at about 5m/s resulting in a Reynolds number based on the
step height of Reh = 3600.

Base Flow In figure 2 the shape factor H is cal-
culated at x/h = 0 for all the investigated cases. A black
horizontal dashed line represents the value for laminar flow
(Blasius). For all the investigated cases H is always above
the value typical for laminar flows, thus condition of lami-
nar separation is kept.

In figure3 the Power Density Spectrum (PSD) is re-
ported measured at y/h = 0 at three downstream locations,
x/h = 3,4 and 5 as function of Strouhal number based on
momentum thickness (calculated at x/h = 0).

The most amplified non-dimensional frequency corre-
sponds to Stθ = 0.012, as reported in literature (Eaton &
Johnston, 1981; Hasan, 1992). Such value corresponds in
physical space to a frequency of about 120Hz.

In figure 4a the stability diagram calculated for the base
flow is presented. The Orr-Sommerfeld equation is solved
by means of Chebyshev polynomials (Orszag, 1971) via
a Matlab code developed in-house(Van Ingen & Kotsonis,
2011). The code had been validated inputting a well-known
hyperbolic tangent velocity profile and results have been
compared to literature (Monkewitz & Huerre, 1982; Huerre
& Monkewitz, 1985; Balsa, 1988; Lie & Riahi, 1988). For
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Figure 1. Model used for experiment and field of view to scale. Discharge volume not in scale.
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Figure 3. Distribution of PSD of the base ow as function
of non-dimensional frequency. Probes located at y/h = 0
and x/h = 3 (dotted line), x/h = 4 (dashed line) and x/h = 5
(solid line).
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Figure 4. Left. Calculated stability diagram for base flow
in non-dimensional scales. Right. Calculated stability dia-
gram for base flow as function of physical frequency (f).

calculation, local velocity profile, Reynolds number and the
non-dimensional frequency ω were scaled on the momen-
tum thickness (as defined in Lie & Riahi (1988) and the
edge velocity at each x location.

A thicker black line indicates the curve of neutral sta-
bility. It is apparent that theoretically this base flow is unsta-
ble already at very low Reynolds number (Michalke, 1965;
Balsa, 1988; Lie & Riahi, 1988). In figure 4b it is possible
to appreciate that the most naturally unstable frequency is
in the order of 120Hz, value close to the one experimentally
observed via FFT analysis.

Reattachment length Reattachment point is
defined as in literature (Hasan, 1992), i.e. the location were
the mean flow velocity closer to the bottom wall approaches
to zero. Given the finite spatial resolution of the PIV mea-
surements, the exact reattachment point was extrapolated by
linear data interpolation. In figure 5 the trend of reattach-
ment length in function of frequency of actuation is shown.
As already observed in figure 4, the reattachment length of
the non-actuated case is about 8 times the step height (h), as
found in literature for this Reθ (Armaly et al., 1983; Hasan,
1992). Interestingly enough, it is possible to see that the
trend of flow reattachment reaches a minimum around a fre-
quency of actuation of 160Hz, frequency far from the most
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Figure 5. Reattachment length as function of forcing fre-
quency ( fact).

unstable frequency measured within the base flow.

Frequency analysis A frequency analysis per-
formed on the actuated cases by means of FFT reveals
a functional relationship between forcing frequency and
spectral content of the developed flow. In figure 6 PSD
of horizontal velocity fluctuations is shown for all forcing
cases. For each case signals in two probe position down-
stream the step were considered, at x/h = 1 (dotted line)
and x/h = 3(solid line) respectively in the streamwise di-
rection, at y/h = 0.

It is noted that, for all the cases, peaks corresponding to
the actuation frequencies and their sub or super harmonics
are distinguishable. For the case of 80Hz, two main peaks
appear: at 80Hz and at 160Hz. Both peaks are about 40Hz
apart from the most unstable frequency of the base flow, i.e.
120Hz. Even if the forcing is actually 80Hz, the most en-
ergetic peak appears to be at 160Hz, i.e. a super-harmonic
of the forcing frequency. This behaviour indicated that the
natural stability of the actuated flow is changed, shifted for-
ward higher frequencies.

The case of actuation frequency of 120Hz, in figure 6,
reveals only two peaks clearly distinguishable while most
amplified frequency is close to the one found in the base
flow, i.e. 120Hz. Same dominant peak is found for actua-
tion frequency of 20Hz and 40Hz (both sub-harmonics of
120Hz), as result of a resonance effect between flow struc-
tures naturally developed into the flow and actuation forcing
(Hasan, 1992; Chun & Sung, 1996).

The cases of actuation frequency of 140 and 180Hz
show only one peak corresponding to the actuation fre-
quency. Special attention is required to analyse the case
of 160Hz. For this case, super harmonics of the forcing fre-
quency are excited indicating an enlargement of the unsta-
ble frequency range of the flow under control up to 480Hz.
It is interesting to note that the most energetic peak for this
case corresponds to the most energetic mode among all ac-
tuated cases under investigation, even if the actuator energy
input is always the same. This indicates that the forcing
frequency of 160 Hz is very close to the most amplified fre-
quency of the actuated flow, which is considerably different
than the one of the base flow. This is confirmed by the most
successful reduction of the reattachment length induced by
this actuation frequency, as figure 5 shows.
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Figure 6. PSD of the horizontal velocity fluctuations versus physical frequency ( f ). Probe locations at x/h = 1 (dotted line)
and x/h = 3 (solid line) at y/h = 0. fact denotes frequency of actuation.

Overall, it is apparent that the stability of the actuated
flow is changed compared to the base flow. For the majority
of actuation frequencies an increase of the unstable region
within the frequency domain is observed, until the case of
160Hz forcing frequency.

This indicates that the “stability” of a periodically
pulsed actuated flow is a strong function of the forcing fre-
quency itself. The periodic pulsed perturbations which are
convectively amplified downstream develop in large scale
structures and promote transition form laminar to turbulent
flow, in turn modifying the separated region (see figure 5).
Due to the inviscid-viscous interaction (Smith, 1986; Sy-
chev, 1998) the mean flow downstream of the transition lo-
cation changes the overall pressure distribution across the
field of motion affecting the flow also upstream. Therefore,
a mean flow deformation is caused, which consequently
changes the stability of the flow under control (Marxen &
Rist, 2010).

Proper Orthogonal Decomposition The
stability of a flow is a function of the energy distribution
among its infinite modes (Couplet et al., 2003; Gudmunds-
son & Colonius, 2011). Thus, modal energy is investigated
via POD analysis of the time resolved PIV data, using the
snapshot method (Sirovich, 1987a,b,c) over the whole set
of data, i.e. 5000 realisations. Each mode is characterised
by its own energy content, and can be described as a lin-

ear combination of snapshots. Thus, snapshots of velocity
fluctuations can be used to solve an eigenvalue problem and
determine spatial modes of energy distribution. The cal-
culated eigenvalues associated to each mode represent the
kinetic energy of the mode itself relatively to the total ki-
netic energy of all calculated modes. Moreover, the modes
are ordered in function of their energy content.

Figure 7 shows the normalised energy content of the
first ten POD modes (Em) relative to the total fluctuation
energy (Etot) for all tested cases. It is possible to note in
all the cases that groups of two or three eigenvalues have
similar energy content. These modes are coupled, i.e. their
correspondent eigenvector interact with each other (Farrell,
1988; Couplet et al., 2003). In general, coupled modes are
characteristics of periodic flow phenomena as for the case
of Karman shedding (Deane et al., 1991; Van Oudheus-
den et al., 2005). In the same manner, when an eigenvalue
is uncoupled it represents non-periodic flow structures like
the one produced by a flapping laminar separation bubble
(Price et al., 2002; Wang & Tan, 2008; Ehrenstein & Gal-
laire, 2008). In figure 7, for the cases of 20, 40, 80, 120 and
200Hz a sequence of first two coupled modes and a third
uncoupled mode is observed. For the cases 140, 160 and
180Hz and for the base non-actuated flow the uncoupled
mode is instead the most energetic.

It can be seen that for all the actuated cases the first
mode is less energetic than the non-actuated one. Thus, the
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effect of periodically pulsed actuation is to redistribute the
modal energy.

Linear Stability Theory Linear Stability The-
ory (LST) is employed in order to calculate the stability di-
agrams of the cases under investigation shown in figure 8.
Non-dimensional frequency is given by equation 1

F+ =
2π f ν
Ū2

×105 (1)

The stable and neutral part of the diagram is left blank.
Arbitrary values of imaginary eigenvalue (αi) were selected
in order to facilitate the visualisation of the changes of the
stability diagram among the different cases. Results indi-
cate that the effect of the periodic pulsed disturbance intro-
duced into the field of motion is able to change the stability
of the flow itself verifying the previous experimental obser-
vations. It is evident that this kind of flow is already un-
stable for very low Reynolds number, as found in literature
(Balsa, 1988; Lie & Riahi, 1988).

Given the shape of the stability diagram, higher actu-
ation frequencies are able to stimulate more unstable fre-

quencies at lower Re numbers, i.e. closer to the step. There-
fore, higher frequencies are able to affect the flow more up-
stream. However, as the frequency of actuation is increased,
values of negative imaginary part of the calculated eigen-
values decrease. According to the frequency of actuation,
the perturbations generated by a pulsed input (Huerre &
Monkewitz, 1985; Kaiktsis et al., 1996) can drive an en-
ergy redistribution among the infinite modes (Ravindran,
2000; Couplet et al., 2003) according to the new stability of
the controlled flow. Therefore, a perturbed flow, reaching a
new stability state, adapts itself to the periodic perturbation
achieving a different mean flow with respect to the one of
the non-actuated case.

CONCLUSIONS
A frequency analysis, POD and LST were carried out

on time resolved PIV data. Results showed that the stabil-
ity of actuated flows changed with respect to the base flow.
Such behaviour indicated a Mean Flow Deformation (MFD)
of the flow under control. The evolution of a periodically
pulsed actuated flow is a strong function of the forcing fre-
quency itself. The effect of the periodic pulsed perturba-
tion which are convectively amplified downstream develop
in large scale structures and promote transition from lam-
inar to turbulent flow, in turn modifying the separated re-
gion. Due to the viscous-inviscid interaction (Smith, 1986;
Sychev, 1998) the mean flow downstream of the transition
location changes the overall pressure distribution across the
field of motion affecting the flow also upstream. Therefore,
a mean flow deformation is caused, which consequently
changes the stability of the flow under control similar to the
previous observations regarding laminar separation bubbles
(Marxen & Rist, 2010).

The modified stability due to MFD (see figure 8)
causes a redistribution of energy among the dominant
modes, as POD analysis showed (see figure 7).

MFD is a consequence of the natural tendency of any
physical perturbed system to a configuration of minimal en-
ergy. Therefore, a perturbed flow adapts itself to the peri-
odic perturbation achieving a different mean flow with re-
spect to the one of the non-actuated case, relaxing to new
stability state.

Summarising, two main points are postulated: first,
disturbances introduced by a pulsed periodical actuation
drive the shear layer under control toward a modified sta-
bility behaviour. This is primarily an effect of MFD. Sec-
ond, the most unstable frequency is a function of the lo-
cal stream-wise location within the shear layer under con-
trol. This effectively means that the optimum actuation fre-
quency for this type of convective flows is not the most am-
plified frequency at the location of the actuator but rather at
the location of breakdown.

The implications of these two points need to be taken
into account when reactive flow control strategies are de-
signed towards controlling massively separated laminar
shear layers. It becomes evident that the actuation fre-
quency should be adjusted by means of a feedback loop in
order to maximise the effectiveness of control based on the
new stability state of the actuated flow. Additionally, the lo-
cation of the actuator should be taken into account such that
any forcing is tailored to arrive at the location of breakdown
with the optimum spectral content.
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