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ABSTRACT
We analyze the influence of the specific features

of variable-density Kelvin-Helmholtz (hereinafter quoted
VDKH) roll-ups on the development of three-dimensional
secondary instabilities. We use a direct-adjoint non-
modal linear approach to determine the fastest growing
perturbations over a single period of the time-evolving
two-dimensional base-flow. Due to inertial (high Froude
number) baroclinic sources of spanwise vorticity at high-
Atwood number (up to At = 0.5 here), temporally evolv-
ing mixing-layers exhibit a layered structure associated with
a strain field radically different from their homogeneous
counterpart. It is found that additional mechanisms of
energy growth are onset a little before the saturation time of
the primary two-dimensional KH instability, corresponding
to a substantial accumulated baroclinic spanwise vorticity in
the base-flow. Beyond in time, the extra energy gain due to
increasing Atwood numbers, relies both on the higher strain
rate found in the vorticity enhanced braid and on contribu-
tions from spanwise baroclinic sources. Both effect are re-
sponsible for the organisation of the perturbation spanwise
vorticity into elongated layers along the braid. They are
associated to longitudinal velocity streaks that are responsi-
ble for the energy growth. This mechanism is boosting the
energy gain over the whole range of spanwise wavenum-
bers but the short wavelength instabilities benefit more from
the increase of the Atwood number than the long wave-
length ones. Finally, it is observed that all optimal per-
turbations eventually triggers an hyperbolic-type instability,
even at small spanwise wavenumber, where elliptic modes
are favoured in the homogeneous case.

INTRODUCTION
Flows of interest to industrial applications or occur-

ring spontaneously in nature are seldom homogeneous. Gas
flows over obstacles at high velocities are subjected to varia-
ble temperature and density conditions due to the gas com-
pressibility and viscous dissipation, but low-speed flows in-
volved in heat-transfer or in species mixing are subjected
to non-homogeneous inlet or boundary conditions resulting
also in density variations in the bulk flow itself. The density
contrast, namely the Atwood number At ∼ ∆ρ/ρ0, may be
very small but geophysical flows immersed in a gravity field
are affected by buoyancy and their governing equations are
liable to the Boussinesq approximation. For pairs of highly
density-contrasted fluids, such as fuel-oxidizer candidates

(i.e. methane-air, hydrogen-oxygen), the Atwood number
rises up well beyond the Boussinesq approximation. In
these flows, the vortex dynamics is affected by an inertial
baroclinic vorticity production and departs largely from its
homogeneous counterpart Joly et al. (2001).

As locally relevant to more complex flows, the mixing-
layer paradigm, and its temporally evolving subset, is of
central interest to these variable-density mixing flows. In
this case, baroclinic vorticity production promotes a lay-
ered vorticity structure eventually replacing the KH roll-
up with thin and wrapped vorticity sheets of alternate signs
as the Atwood number is increased (Joly, 2002). The ef-
fect of this spanwise vorticity redistribution in the VDKH
billows on its transition to three-dimensional motions was
addressed by Fontane & Joly (2008) with a modal stability
analysis. The linear response of the plane VDKH billow
was demonstrated to be rich of a whole set of new secon-
dary modes together with classical elliptical and hyperbolic
modes with higher growth rates than those measured in the
homogeneous KH billow. The two-dimensional secondary
inflectional instability of the baroclinically-enhanced vor-
ticity braid, elucidated by Reinaud et al. (2000), was nicely
recovered in the linear analysis. However, this quasi-static
approach based on a frozen approximation of the unsteady
two-dimensional base flow is limited to perturbations grow-
ing faster than the time scale of the base flow unsteadiness.
Given that these time scales are not clearly separated and
that transient growth may benefit from the non-normality
of the dynamical operator, there is a need to carry out a
linear direct-adjoint non-modal analysis, well suited to de-
termine the optimal energy growth of small perturbations
over a temporally evolving VDKH billow. This is the aim
of the present work. After a brief description of the base-
flow and the numerical technique, we present the optimal
perturbations and give a detailed analysis of the physical
mechanisms responsible for their growth.

PROBLEM FORMULATION
The base-flow considered here consists of the Kelvin-

Helmhotz instability which develops in a shear layer be-
tween two fluids of different densities with initial tanh pro-
files (Fontane & Joly, 2008). We take u0 half the velocity
difference across the shear layer, 2l0 the shear layer depth
and ρ0 = (ρupper +ρlower)/2 the mean density as character-
istic velocity, length and density scales. The Reynolds num-
ber Re = (u0l0ρ0)/µ is set to 1000 and the Atwood number
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Figure 1. Base-flow spanwise vorticity field at the satu-
ration time tKH = 30 for (a) At = 0 and (b) At = 0.5. The
gray-shaded region corresponds to the domain where the
base-flow density is lower than ρ0 and dashed contours cor-
respond to positive values. Tick marks along x and y axis are
separated by the initial vorticity thickness 2l0. The saddle
point is denoted S. These conventions will hold throughout
the paper.

At = (ρupper −ρlower)/2ρ0 varies in the range At ∈ [0,0.5].
We address buoyancy-free flows where the Froude num-
ber, defined by Fr = u0/

√
gl0At with g the gravity accel-

eration, is very large. The two-dimensional base-flow ve-
locity UUU = (Ux,Uy) and density R fields of the VDKH bil-
lows are obtained through non-linear direct numerical sim-
ulations of the shear layer perturbed with the most ampli-
fied Kelvin-Helmholtz linear mode. The amplitude of the
primary KH instability is set such that non-linear satura-
tion occurs at tKH = 30, see Lopez-Zazueta et al. (2015) for
details about the numerical procedure. The density varia-
tions induce strong modifications in the development of the
KH primary wave due to the baroclinic vorticity production
(Joly et al., 2001). The main feature lies in the asymmetric
reorganisation of the the base-flow vorticity field into two
sheets of opposite sign holding high level of strain and lo-
cated on either side of the braid saddle point, as displayed
in figure 1.

We look for three-dimensional linear perturbations of
the form [ux, uy, iuz, p, ρ](x,y, t)eikz, with k the spanwise
wavenumber, that are likely to grow on top of the VDKH
billows. We solve iteratively the linearised direct-adjoint
Navier-Stokes equations for the velocity and density per-
turbations fields, see Lopez-Zazueta et al. (2015) for a de-
tailed presentation of the equations, methodology and nu-
merics. The optimisation loop is aimed for the maximi-
sation over all possible initial conditions with zero den-
sity perturbation of the perturbation kinetic energy gain
GE(T, t0) = max(E(T )/E(t0)) over the period [t0,T ] where
t0 and T are respectively called injection and horizon times.
In the following, we only present the case where t0 = 0 and
T = 40. The influence of the frame of optimisation is con-
sidered in Lopez-Zazueta et al. (2015). The kinetic energy
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Figure 2. Optimal energy gain GE at T = 40 as a func-
tion of the spanwise wavenumber k for four values of the
Atwood number.
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Figure 3. Energy field of the homogeneous optimal per-
turbation at tKH with (a) k = 0.6 and (b) k = 4. The dashed
contour corresponds to 20% of the maximal absolute value
of the base-flow vorticity |Ωm|

of the perturbation is classically defined by

E =
1
2

∫ ∫
(uxu∗x +uyu∗y +uzu∗z )dxdy

where the integration is performed on the computational do-
main and ∗ stands for the complex conjugate.

OPTIMAL PERTURBATIONS
Figure 2 shows the optimal energy gain GE at T = 40

versus spanwise wavenumber for At = 0,0.05,0.25 and
0.5. One can see that density effects result in a signif-
icant increase of GE for all k. In the homogeneous case,
long wavelength perturbations present energy gains signifi-
cantly higher than large wavenumber ones. As already ob-
served by Arratia et al. (2013), we find that the former trig-
ger elliptic modes which develop mainly within the core
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Figure 4. Temporal evolution during [0,T ] of the energy field for the global optimal perturbation with k = 0.6 and At = 0.5.

of the KH billow while the latter give rise to the hyper-
bolic modes which are located along the braid, see figure
3. When the Atwood number increases up to At = 0.5,
small wavenumber perturbations remain the most amplified
but large wavenumber hyperbolic ones benefit more from
the increase of the Atwood number, with a gain increa-
sing by more than two orders of magnitude for the largest
wavenumbers explored. For all Atwood numbers, the over-
all maximum energy gain, usually quoted as the global op-
timal perturbation, is always found for k = 0.6.

Global optimal perturbation
We now focus on this global optimal perturbation for

the most density-contrasted case in order to decipher the
physical mechanisms at play in the observed enhancement
of the energy growth. Figure 4 displays the evolution of its
kinetic energy field. The initial perturbation consists in a
thin layer centred around the hyperbolic saddle point and
aligned with the direction of maximum compression of the
base-flow. The layer is progressively deformed under the
base-flow mean shear so that it is realigned in the direction
of maximum stretching by tb ≈ 20. This kinematic evolu-
tion is typical of the so-called Orr mechanism of transient
energy growth. Then the perturbation concentrates into two
thin layers along the braid where lies the base-flow baro-
clinic vorticity production. This pattern is characteristic
of hyperbolic instability which takes over the elliptic mode
found in the homogeneous case for such a small wavenum-
ber. The change of nature for the perturbation concords with
the modal analysis of Fontane & Joly (2008) which showed
that the elliptic mode was not detected amongst the most
amplified modes for At = 0.5.

Figure 5 displays the temporal evolution of the global
optimal energy gain for the four values of the Atwood num-
ber considered here. For non-zero Atwood numbers, the ex-
tra energy gain onsets around a bifurcation time tb ≈ 20, a
little before the saturation of the VDKH billow at tKH = 30,
leaving perturbations insensitive to density effects during
the early development of the base-flow. The evolution of
the perturbation is thus clearly divided into two stages: an
initial one [t0, tb] with a unique route for optimal energy
growth whatever the Atwood number, and a second one
[tb,T ] where density variations have an influence on the de-
velopment of the perturbation. Looking at the evolution of
the primary KH mode, the first stage corresponds the lin-
ear quasi-parallel evolution of the base-flow, whereas the

VDKH wave enter the non-linear regime and rolls up in the
second stage (Lopez-Zazueta, 2015).

In order to identify the physical mechanisms respon-
sible for the perturbation growth, we look more precisely
at the evolution equation for the growth rate of the pertur-
bation σE =

1
E

dE
dt which is obtained straightforwardly from

the transport equation for the kinetic energy:

dE
dt

= Π1 +Π2 +Π3 +Π4 +Πφ

where Π1,Π2,Π3,Π4 and Πφ are respectively the extraction
of energy from the base-flow shear, the extraction of energy
from the base-flow strain field, the production/destruction
of energy through dilatation/compression, the produc-
tion/destruction of energy through variable-density effects
and the viscous dissipation. They read (Lopez-Zazueta,
2015):

Π1 = −
∫ ∫

uxuy

(
∂Ux

∂y
+

∂Uy

∂x

)
dxdy

Π2 =
1
2

∫ ∫ (
u2

x −u2
y

)(∂Ux

∂x
− ∂Uy

∂y

)
dxdy

Π3 =
∫ ∫ 1

R

(
ux

∂ p
∂x

+uy
∂ p
∂y

+uz
∂ p
∂ z

)
dxdy

−
∫ ∫ ρ

R2

(
ux

∂P
∂x

+uy
∂P
∂y

+uz
∂P
∂ z

)
dxdy

Π4 =
1
2

∫ ∫
u2

z

(
∂Ux

∂x
+

∂Uy

∂y

)
dxdy

Πφ =
1

Re

∫ ∫
ΦE dxdy .

Among them, Π3 and Π4 are specific to the inhomogeneous
situation. Because Π4 term has been found to be very small,
it is combined to Π2 in the results presented in the following.

Figure 6 shows the temporal evolution of all these con-
tributions for At = 0 and At = 0.5. Before tb, the kinetic
energy budget follows the same evolution in both cases.
The homogeneous evolution is in excellent agreement with
the one obtained by Arratia et al. (2013), see their figure
7. During the initial period [t0, tb], the perturbation growth
is due to the energy extraction from the base-flow shear.
As observed by Arratia et al. (2013), the Orr mechanism
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Figure 5. Temporal evolution of the energy gain GE of
the global optimal perturbation at various Atwood numbers.
The bullet points denote the horizon time.

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

0.2

0.3

 

 

t

σE

σE σ1 σ2 σφ

(a)

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

0.2

0.3

 

 

t

σE

σE σ1 σ2+4 σ3 σφ

(b)

Figure 6. Temporal evolution of the kinetic energy growth
rate σE and its different contributions during [t0,60] for the
global optimal perturbation at (a) At = 0 and (b) At = 0.5.

of transient energy growth is responsible for the initial de-
velopment of the perturbation with k = 0.6, which corre-
sponds to the early evolution of the layer depicted above
in figure 4. Shortly after tb, the evolution departs signif-
icantly from its homogeneous counterparts where energy
growth is essentially due to base-flow shear conversion. In
the inhomogeneous flow, the production/destruction term
Π3 specific to the variable-density situation becomes active
and modify notably the energy growth of the perturbation
along with the energy conversion from the base-flow strain
Π2 which takes over the shear extraction term Π1. Com-
pared to the homogeneous case, the increase of the Atwood
number results also in an increase of the viscous dissipation
which is largely compensated by Π2 and Π3 terms since an
extra gain of energy is observed. The identification of the
two terms Π2 and Π3 as being the source of energy growth
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Figure 7. Temporal evolution of the enstrophy Z and the
relative contribution of each vorticity component ωx,ωy and
ωz for the global optimal perturbation at (a) At = 0 and (b)
At = 0.5.
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Figure 8. Temporal evolution of the two components of
the spanwise linearised baroclinic torque bz for the global
optimal perturbation at At = 0.5.

does not explain the physical mechanism behind them. This
is the object of the next section.

The physical mechanism of extra energy
growth

The Π3 term responsible for the extra energy gain is the
trace in the kinetic energy equation of the baroclinic torque
bbb which becomes active in the vorticity transport equation
as soon as density variations are present. If we look at the
evolution of the perturbation enstrophy and its repartition
between the vorticity components in figure 7, it can be ob-
served in the inhomogeneous case that the growth of en-
strophy after tb is only due to the increase of the spanwise
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Figure 9. Temporal evolution during time interval [tb,T ] of the density field for the global optimal perturbation at At = 0.5.
Dashed contours correspond to negative values.
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Figure 10. Spanwise component of the linear baroclinic
torque bz at t = 25 with a schematic representation of the
term bzII sketched on top of it. Red and blue dots indicate
the local sign of the spanwise vorticity of the perturbation
before the action of the baroclinic torque.

vorticity component ωz. Compared to the homogeneous sit-
uation, not only there is an extra gain of enstrophy but the
anisotropy in favour of ωz is also strengthened. This in-
crease of ωz is linked with the spanwise component bz of
the linearised baroclinic torque which writes as the sum of
the two following terms (Lopez-Zazueta et al., 2015):

bz = ax
1
R

∂R
∂y

−ay
1
R

∂R
∂x︸ ︷︷ ︸

bzI

Ax
∂
∂y

(ρ
R

)
−Ay

∂
∂x

(ρ
R

)

︸ ︷︷ ︸
bzII

.

where AAA and aaa are the acceleration fields of the base-flow
and the perturbation respectively. Figure 8 displays the
temporal evolution of these two terms. After tb, the se-
cond term bzII is responsible for the essential of the span-
wise baroclinic vorticity production. It corresponds to the
cross product between the two-dimensional base-flow ac-
celeration field and the perturbation density field. Look-
ing at the evolution of the perturbation density field during
[tb,T ] in figure 9, one can see that it is mainly structured
in a thin layer located along the braid. Combined with the
two-dimensional hyperbolic base-flow acceleration field in
the braid region, it results in a spanwise baroclinic torque
organised into a antisymmetric quadrupole centred on the
braid saddle point as plotted in figure 10 at t = 25, along
with a sketch of the contributions of bzII . Before tb, the
spanwise perturbation vorticity field ωz is structured into
two layers of opposite sign located along the braid, as it
can be seen at t = 15 in figure 11. Thus, in the part of the
braid located on the left side of the saddle point, the two
baroclinic sink and source are of the same sign as the per-
turbation spanwise vorticity ωz denoted by the bullet points
in figure 10. This results in an enhancement of the two ex-

isting layers. Conversely, in the part of the braid located
on the right side of the saddle point, the two baroclinic sink
and source are of opposite sign to the one of ωz. This re-
sults in a destructive contribution of bz to the two layers.
As illustrated in figure 11, the action of the spanwise baro-
clinic torque on the right part of the braid results first in
the destruction of the initial two layers followed by the ap-
pearance of two layers of opposite sign which are readily
observable at t = 25. By t = 30, the spanwise vorticity field
of the perturbation is structured on each side of the saddle
point into two elongated thin layers. This pattern is charac-
teristic of a longitudinal jet which is confirmed by looking
at the perturbation longitudinal velocity field ux in figure
11. At t = 30, it consists of two streaks of opposite sign
located along the braid on either side of the saddle point.
These streaks are responsible for the essential of the pertur-
bation energy growth as shown in figure 12. While the con-
tribution of each velocity component to the energy growth
is isotropic in the homogeneous case, the energy growth is
essentially due to the increase of the longitudinal velocity
component in the variable-density case. This is corrobo-
rated by a similar evolution of the structure for both the lon-
gitudinal velocity field and the energy field in figure 4 and
11.

The above physical mechanism for energy growth of
the global optimal perturbation relying on spanwise baro-
clinic vorticity production is generic for all the optimal per-
turbations identified here whatever the value of the span-
wise wavenumber. A similar analysis is performed for the
large wavenumber perturbation in Lopez-Zazueta (2015).

CONCLUSIONS
We performed a non-modal stability analysis of the

variable-density Kelvin-Helmholtz billow looking for the
optimal perturbations maximising the growth of kinetic
energy. It is observed that the optimal energy gain is insen-
sitive to the Atwood number during an initial stage [t0, tb]
corresponding to the quasi-parallel linear phase of the pri-
mary wave. There the global optimal perturbation benefits
from base-flow shear conversion through the so-called Orr
mechanism. After the bifurcation time tb, the optimal gain
is increased with the Atwood number. Contrary to the ho-
mogeneous case (Arratia et al., 2013), the optimal perturba-
tion triggers the hyperbolic instability whatever the value of
the spanwise wavenumber. The extra energy gain is asso-
ciated with the appearance of longitudinal velocity streaks
along the baroclinically-enhanced vorticity braid. These
streaks result from the baroclinic production of two thin
layers of spanwise vorticity along the braid, specifically
due to the combination of the base-flow acceleration field
and the perturbation density field. It is remarkable to note
that variable-density effects in the base-flow do not promote
the strength of streamwise vortices, so far accepted as the
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Figure 11. Temporal evolution during time interval [15,30] of the spanwise vorticity component ωz (upper) and the longitu-
dinal velocity component ux (lower) for the global optimal perturbation at At = 0.5.

paradigm for three-dimensionalisation of free shear flows.
The maximisation of the kinetic energy gain chosen

here is not the only available criterion to figure out the influ-
ence of density effect on the development of such perturba-
tions. Maximisation of enstrophy or mixing (Foures et al.,
2014) would impose different conditions on the baroclinic
vorticity production and density field that might be worth to
scrutinise in a future extension of this work.
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Figure 12. Temporal evolution of the kinetic energy E and
the relative contribution of each velocity component ux,uy

and uz for the global optimal perturbation at (a) At = 0 and
(b) At = 0.5.
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