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ABSTRACT
In an early work, Marusic, Mathis & Hutchins (2010)

developed a model ables to reconstruct the streamwise
turbulence fluctuation of the inner-layer in zero-pressure-
gradient, flat-plate, turbulent boundary layer. The origi-
nality of this model, which is based on scales interaction,
is that it requires as input only one localised information
(e.g. one measurement point) about large-scale log-region
events. The present study is dedicated to the model’s as-
sessment under pressure gradient effects. Results show the
need to undertake the calibration when change in external
conditions occurs, pointing out the non-universality of the
model’s parameters (Adrian, 2010). This preliminary work
shows that the model is able to predict the streamwise ve-
locity statistics of the inner-layer up to the second order.

INTRODUCTION
Wall-bounded turbulent flows remain nowadays one

of the main concern in industrial applications, as they are
linked to drag loss, pressure drop, etc. Despite several
decades of intense researches, the understanding and pre-
diction of the near-wall turbulence remain limited and chal-
lenging. This founds its cause in the wide range of scales
that develop and produce multiple complex interactions.
This degree of complexity is measured by the Reynolds
number, usually very (extremely) high in most of appli-
cations, and difficult to reproduce or simulate in labora-
tory. The discovery of the existence of recurrent features
has shed light that despite an obvious disorder of the flow,
some structures seem to be organised, eventually quantifi-
able and modelisable (Townsend, 1976; Cantwell, 1981).
The numerous studies that have followed have shown the
existence of a large and complex hierarchy of scales inter-
acting together (Kim & Adrian, 1999; Adrian, 2007). Par-
ticularly, two distinct organisations have been identified.
The near-wall cycle, apparently to small-scale motions or-
ganised in streamwise streaks, and large-scale log-region
events such as hairpin (Adrianet al., 2000), or superstruc-

tures (Hutchins & Marusic, 2007; Dennis & Nickels, 2011).
Recently, it has been shown that the large-scale motions
developing within the logarithmic region of the turbulent
boundary layer, influence the near-wall field through super-
position and modulation mechanisms (Hutchins & Marusic,
2007; Mathiset al., 2009). The superposition mechanism
is seen as a footprint of the large-scales onto the near-wall
small-scale field (as a long-wavelength trend). The modula-
tion mechanism is characterised by a locally change in the
small-scale fluctuations magnitude depending on the sign
of the large-scale log-region momentum: if it is negative
the small-scale fluctuations are attenuated andvice-versa.
Furthermore, the large-scale activity has been found to in-
crease with increasing Reynolds number and is believed to
be related, at least to a great extend, to the Reynolds number
effects (Hutchins & Marusic, 2007).

Based on the above observations, Marusic and co-
workers (Marusicet al., 2010; Mathiset al., 2011) have
recently proposed a predictive model for zero-pressure-
gradient (ZPG) smooth-wall turbulent boundary layer,
which is able to reconstruct the near-wall streamwise fluc-
tuating velocity field (say forz+ < 200) based on a sin-
gle point measurement taken in the log-layer away from
the wall. Here, the fluctuating component is defined as
u′(x, t) = u(x, t)− u(x), whereu(x, t) andu(x) are the to-
tal and mean values of the velocity, respectively, andx =
(x,y,z) denotes the position vector. The coordinatesx, y
andz refer to the streamwise, spanwise and wall-normal di-
rections, and the respective fluctuating velocity components
are denoted byu, v andw. Overbars indicate time-averaged
values, and the superscript “+” is used to denote viscous
scaling of lengthz+ = zUτ/ν and velocitiesu+ = u/Uτ ,
whereν the kinematic viscosity of the fluid,Uτ =

√
τw/ρ

the friction velocity withτw the mean wall shear stress and
ρ the fluid density. The model is of the form:

u′+p (z+, t+) = u′∗(z+, t+)
{

1+χ(z+)u′+OL(z
+
OL, t

+,θL)
}

+α(z+)u′+OL(z
+
O , t

+,θL) (1)

1

June 30 - July 3, 2015 Melbourne, Australia

9
9B-5



whereu′+p is the predicted time-series normalised by wall

variables,u′+p = u′p/Uτ and t+ = tU2
τ /ν. The time-series

u′∗, which is normalised in wall units, represents the sta-
tistically “universal” small-scale signal that would exist in
the absence of any inner-outer interactions.α and χ are
respectively the coefficients of superposition and modula-
tion, whereasθL corresponds to the large-scale inclination
angle to account for the streamwise shift between the two
different wall-normal locations,z+ and z+O in equation 1.
The model’s parametersu′∗, α, χ and θL are determined
from a once-off calibration experiment at an arbitrarily cho-
sen Reynolds number, and are hypothesized to be Reynolds
number independent. The only user input required for the
model is a characteristic signal of the large-scales from the
log-region,u′+OL, taken nominally at the geometric centre of
the log-layer,z+O =

√
15Reτ , whereReτ =Uτ δ/ν is the fric-

tion Reynolds number,δ the boundary layer thickness (see
Mathiset al., 2009, 2011, for justifications about the choice
of z+O ). The model consists of two parts. The first part in
equation 1 models the amplitude modulation of the small-
scales, hereu′∗, by the large-scale log-region motions,u′+OL.
The second term,αu′+OL, models the superposition of the
large-scale motions felt at the wall. The underlying idea
is that the near-wall small-scale motions are universal (i.e.
they do not change with Reynolds number), and therefore
only influenced by large-scale log-region events (the inten-
sity of the influence increasing with increasing Reynolds
number). Therefore, the Reynolds number effects are con-
fined to the large-scale log-region input signal,u′+OL.

The purpose of the present study is to analyse the ca-
pabilities of this conceptual model to be extended to wall-
bounded flows subjected to pressure gradient effects. In
a previous study we have shown that the scale interaction
mechanisms, superposition and modulation, remain sim-
ilar in wall-bounded flows subjected to a pressure gra-
dient effect, whether it is adverse (APG) or favourable
(FPG) (Harunet al., 2013). Spectral and scale decompo-
sitions show that the energy distributions are similar, with
however some noticeable discrepancies. Importantly, the
main differences between APG, ZPG and FPG flows are
found to be in the large-scales associated with the log-
region. In the APG case they are found to be more en-
ergetic compared to ZPG, whereas the opposite occurs for
FPG flows. Meanwhile, the near-wall small-scale field ap-
pears to be relatively similar. These observations give us all
confidence in possibility to extend the inner-outer predic-
tive model to wall-bounded flows under pressure gradient
effects. Besides, Adrian (2010) raised the question about
the “truly” universality of the model’s parameters (u′∗, α,
χ andθL), i.e. are they or not dependent on the flow con-
ditions, such as pressure gradient effects, roughness at the
wall, etc? The present study also aims to shed some light
on such an essential query.

EXPERIMENTAL DATASET
In order to assess the behaviour of the model under

pressure gradient effects and assess its universality, the
model is calibrated independently in the different pres-
sure gradient conditions. To do so, two separate calibra-
tion measurements have been performed, one in APG and
one in FPG, whereas the ZPG calibration dataset comes
from Mathiset al. (2011). Each measurement setup consist
of two hot-wire probes separated in the wall-normal direc-
tion, sampled simultaneously in order to calibrate the pre-

dictive model for each pressure gradient condition. A fixed
probe is located at the outer-spectral-peak location,z+O =√

15Reτ , as it has defined for ZPG condition (see Mathis
et al. (2009)). It should be emphasised that we observed a
slight change of this position under pressure gradient effects
which tends to be closer to the wall as the FPG increases and
away from the wall as the APG increases (see Harunet al.
(2013)). Unfortunately, this has not been considered in the
present calibration experiment, but ana posteriori test is
given further within the paper to assess its effect. The fixed
outer-probe is sampled simultaneously with a moving probe
that traverses the inner region. Details of the main experi-
mental conditions are given in Table 1. The friction veloc-
ity in APG and FPG configurations has been directly mea-
sured using oil-film interferometry (Chauhanet al., 2010),
whereas the Clauser chart is used in the ZPG case.

Table 1: Experimental conditions of the calibration
measurements;β = (δ ∗/τw)(dP/dx) is the pressure
gradient coefficient, whereδ ∗ is the displacement
thickness.

Reτ β ν/Uτ l+

APG 3,300 1.55 31.7 15

ZPG 7,300 0 44.6 22

FPG 3,000 -0.50 20.7 31

The corresponding turbulence properties, streamwise
pre-multiplied energy spectra map and streamwise turbu-
lence intensity are reported in Figure 1. In Figure 1(d),
the solid red symbol shows the location of the outer fixed
probe, the open blue symbols the moving probe and open
grey symbols results from a full traverse profile measure-
ment. It should be emphasised that in order to avoid any
bias in the streamwise Reynolds stress comparison, due to
the disparity in the hot-wire sensor lengthl+ (as see in Ta-
ble 1), the spatial resolution correction method developed
by Smitset al. (2011) is systematically applied.

Table 2: Overall flow conditions range of the database
used for the validation test (from Harun (2012)).

Reτ β l+

APG 1,750 : 3,900 1.6 : 4.54 15 : 31

FPG 2,100 : 3,100 −0.52 :−0.33 17 : 31

Once calibrated, the model’s capabilities are assessed
using a large database provided by the work of Harun
(2012). These measurements consist of single hot-wire
probe traverses, both in APG and FPG conditions, with
variable Reynolds number and pressure gradient coefficient.
Full details are available in Harun (2012). Table 2 sum-
marises the overall range of flow conditions.
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Figure 1: (a− c) Streamwise pre-multiplied energy spectra mapkxφuu/U2
τ . Contour levels are 0.2−1.6 with 0.2

increments. The thicker blue contour corresponds to 0.1.(d) Streamwise Reynolds stress profiles for all three
cases (ZPG atReτ = 7300, APG and ZPG atReτ ≃ 3000).
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Figure 2: Universal signal’s properties obtained for several cut-off wavelength; Solid black line corresponds to the
universal signal properties from the ZPG model obtain withλ+

x cutoff = 7000.

THE CALIBRATION

Details of the full calibration procedure are available
in Mathis et al. (2011). Here, the goal is to apply it to
the APG and FPG configurations, and to compare the uni-
versal parameters with the ones obtained in Mathiset al.
(2011). However, before going through the calibration,
it should be recalled that the procedure is based on scale
decomposition, using a sharp filter in the Fourier space
at a given cut-off wavelength. In the original procedure
proposed by Mathiset al. (2011), the cut-off wavelength
has been defined toλ+

x = 7000, as it was argued to be a
good compromise to separate the inner- and outer-spectral
peaks (see figure 1(a)). This choice was shown to have
no particular influence as long is in-between both peaks.
However, under pressure gradient effects the cut-off wave-

length choice becomes a little unclear. Indeed, as reported
in Harunet al. (2013) FPG condition tends to attenuate the
large-scale activity which induces a barely visible outer-
peak in the spectral map (see figure 1(b)). On the oppo-
site, in APG condition the large-scale activity tends to be
exacerbated which makes a wider outer-peak (in both wall-
normal and wavelength directions on the spectra map, see
figure 1(c)). Therefore, a lower cut-off wavelength, say
λ+

x = 3000≃ δ+, seems more appropriate. However, this
raises the question of the real effect of the cut-off wave-
length onto the parameters and accuracy of the model under
pressure gradient effects. To avoid doubts, the calibration
procedure is applied to the APG and FPG calibration data-
sets using a series of five cut-off wavelengths distributed
betweenλ+

x = 3000 and 7000.

3



 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2

α

αu′+OL(z
+
O)

2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2

λ+
x = 3000

λ+
x = 4000

λ+
x = 5000

λ+
x = 6000

λ+
x = 7000

χ

 5

 10

 15

 20

 25

 30

 35

1 2

θL

λ+
x = 3000

λ+
x = 4000

λ+
x = 5000

λ+
x = 6000

λ+
x = 7000

 0.4

 0.6

 0.8

 1

 1.2

 1.4

101 102

=

z+

α

αu′+OL(z
+
O)

2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

101 102

λ+
x = 3000

λ+
x = 4000

λ+
x = 5000

λ+
x = 6000

λ+
x = 7000

z+

χ

 5

 10

 15

 20

 25

 30

 35

101 102

z+

θL

λ+
x = 3000

λ+
x = 4000

λ+
x = 5000

λ+
x = 6000

λ+
x = 7000

Figure 3: Model’s parametersα, χ andθ obtained for several cut-off wavelengths; Top: APG model; Bottom:

FPG model; The productαu′+OL(z
+
O)

2 is also depicted on left sub-figures; The solid black line corresponds to the
universal signal properties from the ZPG model obtained using λ+

x cutoff = 7000.

The resulting statistics of the universal small-scale sig-
nal u′∗ and model’s parameters,α, χ and θL, are given
respectively in Figures 2 and 3, for both pressure gradi-
ent flows and compared to the ZPG model obtain using a
cut-off wavelengthλ+

x cutoff = 7000. At the first glance, the
model’s parameters seem not universal, in the sense that
they are dependent on the flow configuration. This implies
in the present state of the model that the calibration pro-
cedure needs to be done for each configuration. In future,
the variability of flow condition would be more effective to
be embedded within the model’s parameters. However, this
is beyond the scope of the present study, and constitutes a
long-standing goal that requires substantial work and un-
derstanding about scales relationship in variable flow con-
ditions, not only for pressure gradient, but for other effects
such as roughness effect for instance. The aim of the present
work, is to assess whether or not this model will lead us in
the good direction.

However, some interesting features emerge. First, it is
interesting to note that the universal small-scale signalu′∗

is independent of the chosen cut-off wavelength, for a given
configuration. The only model’s parameter affected by the
chosen cut-off wavelength appears to be the superposition
coefficientα, which is directly link to the large-scales corre-
lation coefficient (see Mathiset al. (2011). Indeed, the cut-
off wavelength location changes directly the large-scalesin-
tensity, then their correlation. However, it is worth noting

that the product,αu′+OL(z
+
O)

2, remains constant as the cut-off
wavelength is changing (see left hand side pictures in Fig-
ure 3), which explain why the universal small-scale signal

is not affected. Indeed, the superposition termαu′+OL(z
+
O)

2

in equation 1 is the main contributor to the energy, whereas
the modulation term affects mainly the odd moments (see
the discussion in Mathiset al., 2011).

MODEL ASSESSMENT
The model calibrated above for both APG and FPG

flow conditions is tested on a wide database, provided by
the work of Harun (2012), whose main characteristics are
recalled in Table 2. This database allows us to evaluate the
model’s accuracy for varying Reynolds number and pres-
sure gradient coefficient. Figures 4 and 5 show predicted
statistics, respectively in APG and FPG boundary layer con-
figuration. The left hand side of the figures is given for a
fixed Reynolds number and varying pressure gradient coef-
ficient, whereas in the right hand side pictures the pressure
gradient coefficient is maintained constant and the Reynolds
number is changing.

Overall, for both APG and FPG cases, the model seems
to well capture the turbulence intensity, with both Reynolds
number and pressure gradient effects captured. This is also
visible on the predicted streamwise pre-multiplied energy
spectra maps given in Figure 6. However, for higher mo-
ments the results are mitigated, as seen in Skewness and
Kurtosis predictions. The reasons of the discrepancy remain
unclear. One of the clue investigated was the location of the
outer-spectral peak, as aforementioned discussed. Indeed,
in previous work (Harunet al., 2013), we observed that
under pressure gradient condition, the outer-spectral peak
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Figure 4: Comparison of the predictive statistics profiles (open symbols) against measurements (solid lines) for
varying Reynolds number and pressure gradient coefficient in APG flows. In top sub-figures, the cross and open
rectangle symbols depict respectivelyz+O =

√
15Reτ andz+O |AM(z+O)=0.

location does not followz+O =
√

15Reτ as in ZPG turbu-
lent boundary layer. It was shown that the outer-peak loca-
tion collapse with the location where the amplitude modu-
lation coefficient crosses zero. Predictions made usingz+O
such asAM(z+O) = 0 did not improve the results. The top
sub-figures in Figure 4 and 5 depict the location of both
z+O =

√
15Reτ (cross symbol) andz+O |AM(z+O)=0 (open square

symbol). Eventually, the effect of the cut-off wavelength
discussed in the above section has also been investigated
and no noticeable change was observed, this for all statis-
tics up to the fourth order and spectra maps.

DISCUSSION AND CONCLUSION
The present work is devoted to the extension of the

inner-outer predictive model of Marusicet al. (2010) to
wall-bounded flows subjected to pressure gradient effects.
Preliminary findings presented here show encouraging re-
sults, as well highlight the need of further work to gener-
alise such a model. The model is able to predict the energy
content,i.e. the streamwise turbulence intensity and spec-
tra, but lacks to predict higher order statistics. Moreover,
it turns out that the model’s calibration needs to be redone
when external conditions change (i.e. APG, FPG, . . . ), em-
phasising the non-universality of the parameters. Finally,
it should be mentioned that the range of Reynolds number
presented here remains limited to fully test and eventually
understand scales interaction subjected to pressure gradient.
This draws the need, as previously occured in ZPG stud-
ies, for high Reynolds number dataset, at least one order of
magnitude than the ones presented here. However, if some

ZPG facilities exist, capable of producing such results, no
facility can yet provide similar high Reynolds number mea-
surements under pressure gradient effects, at least one that
can afford to be spatially and temporally resolved (Hutchins
et al., 2009).
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