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ABSTRACT
The decay of turbulence in a shearless mixing layer

generated from the junction of side by side grids with dif-
ferent mesh sizes but identical solidity is being investigated
using hot wire anemometry. It is observed that turbulence
decays according to a power-law, albeit, with a different
power-law exponent (n) for each grid. The measurements
suggest the existence of turbulent energy transfer from the
larger mesh region to the smaller mesh region at distances as
large as 75 ML from the grid, where ML is the mesh size of
the larger mesh grid. It is further observed that the Reynolds
number Rλ remains constant along the centreline of the flow
(i.e. the junction of the two grids), confirming that self-
preservation is satisfied in this region of the flow. This is
supported by the one dimensional velocity spectra Eu(k1).
On the centreline, the measured energy spectra at positions
x/ML ≥ 45 collapse onto a single curve at all wavenumbers
when scaled by either the Kolmogorov velocity and length
scales or the rms velocity (u′) and Taylor microscale (λ ).
Away from the centreline the spectra do not present such
collapse.

INTRODUCTION
The study of a shearless mixing layer (hereafter,

SML) is of fundamental importance in understanding a
variety of laboratory and geophysical flows. Several in-
vestigations have been carried out in the past to under-
stand the interaction between two different energy con-
taining regions in a SML, (see, for example, Gilbert
(1980); Veeravalli & Warhaft (1989); Briggs et al. (1996);
Knaepen & Carati (2004); Tordella & Iovieno (2006) and
Kang & Meneveau (2008)). Gilbert (1980) conducted the
first experimental investigation on a SML by using a pas-
sive grid with a zero mean velocity gradient in the lateral
direction. He mainly studied the downstream evolution
of the mixing layer and mixing associated with the turbu-
lent kinetic energy diffusion. Later, Veeravalli & Warhaft
(1989)(hereafter, V&W) studied the shearless mixing layer
by using two different grids (e.g. parallel bar grid and
perforated grid). They observed that the mixing layer
is strongly intermittent with non-Gaussian velocity distri-
butions as the high intensity turbulence is transported to
the lower intensity region. Recently, Briggs et al. (1996)
and Tordella & Iovieno (2006) performed numerical simu-
lations on the interaction between different decaying homo-
geneous and isotropic turbulence and offered more infor-

mation on the Gaussian asymptotic state in the absence of
mean velocity gradient. Most of these studies were con-
ducted in the regions close to the grid (x/M ≤ 36), except
Tordella & Iovieno (2006).

Here, we investigate the SML in the region 45 ≤
x/ML ≤ 75, which is well beyond the region so far explored
as reported in the literature. The main purpose of the present
work is to assess how the turbulence in a SML decays, in
particular, whether self-preservation (hereafter denoted SP)
can be attained within this flow region downstream of the
grid.

EXPERIMENTS AND MEASUREMENT TECH-
NIQUES

Figure 1. A three-dimensional sketch of the wind tunnel.

The wind tunnel measurements are carried out in a
straight duct (with a working section of 2.4 m), a schematic
of the wind tunnel is shown in figure 1. Here, we use a grid
with larger mesh (ML = 27.3 mm) on the upper half and a
smaller mesh (MS = 9.1 mm) on the lower half. Experiments
are conducted at a mean velocity of 6.5 m/s. Reynolds num-
bers of 11,375 and 3790 correspond to ML and MS where the
subscripts L and S indicate respectively the large and small
mesh sizes. The measurements of the velocity fluctuations
(u) in the longitudinal direction has been measured using a
single hot-wire probe. The hot-wire (diameter d ≈ 2µm;
length l = 200d) is etched from a coil of Wollaston-Pt wire.
Hot wire is operated with an ambient constant temperature
anemometer (CTA) with an overheat ratio of 1.5. The out-
put signals obtained from the CTA bridge circuit are am-
plified, offset and low pass filtered at a cut-off frequency
( fc) close to the Kolmogorov frequency ( fk ≡ Uo/2πη).
Here, η = ν3/4 < ε >−1/4 is the Kolmogorov length scale,
ν is kinematic viscosity and ε is the mean energy dissi-
pation of turbulence. Sampling frequency ( fs) is at least
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twice the fc. For the signal digitization, a personal com-
puter and 16 bit analogue- digital converters are used. Mea-
surements have been made at six locations between 45ML
to 75ML, where the external flow is more homogeneous
(Comte-Bellot & Corrsin, 1966). The Taylor microscale,
λ , the Kolmorogov length, η and the Taylor microscale
Reynolds number, Rλ , in SML are shown in table 1. No-
tice the relatively similar values of λ between the two grids,
despite a factor 3 for the mesh ratio. On the other hand, η
differs significantly between the two grids, with an average
ratio, (ηS/ηL)≃ 1.45. The ratio RλL

/RλS
drops from about

2.3 to about 2.1 as x/ML increases from 45 to 75. Similar
ratios were reported by Veeravalli1989 for the perforated
grid SML. The configuration of the grid is shown in figure
2. The solidity σ is 36% for both grids.

Figure 2. A schematic of the composite grid with uniform
solidity used in this experimental study
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Figure 3. Mean velocity profiles at different streamwise
locations, dashed line (−−) indicates the geometric center
of the grid.

MEAN VELOCITY, TURBULENCE INTENSITY
and MEAN ENERGY DISSIPATION OF TUR-
BULENCE

Figure 3 shows mean velocity profiles at six different
locations in the downstream direction of the present grid.
Clearly ∂U

∂ y = 0 over a significant portion of the working

section of the tunnel outside the boundary layers associated
with the floor and ceiling of the section. Figure 3 also indi-
cates that U remains constant with respect to x at all lateral
positions.

The lateral distributions of the streamwise turbulence
intensity at various downstream locations from the grid
are shown in figure 4. At first, we note, as expected, that
the turbulence intensity is decreasing in the downstream
direction of the grid in both the smaller and the larger mesh
regions. We also note that turbulence intensity increases
as the lateral location shifts from the smaller mesh grid
to the larger mesh grid, with a maximum occurring in the
latter region but relatively close to the centreline. Clearly,
the interaction between the two grid turbulence results in
energy transfer from external quasi-homogeneous flow
regions to the SML region; the larger mesh grid (larger
turbulence intensity) induces a larger energy transfer than
the smaller mesh grid (lower turbulence intensity). This
is the first time such transfer is observed. Gilbert (1980)
and Veeravalli & Warhaft (1989) measured the velocity
fluctuations up to 36M (M = 33.5 mm corresponding to
their larger mesh), while Kang & Meneveau (2008) carried
out measurements in SML in an active grid turbulence in
the region x/M < 36. However, none of them reported
such energy transfer, suggesting that this transfer becomes
important only at some downstream distance of the grid.
Measurements are currently being carried out in the region
x/M ≤ 45 to determine the location beyond which this
energy transfer becomes important. Note though that
Veeravalli & Warhaft (1989) identified a mechanism that
explains the energy transfer associated with the anisotropy
of the flow, which gives rise to production terms in the
transport equation for the Reynolds stress. Cross-wire
measurements of the three velocity components will be
made to investigate this mechanism.
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Figure 4. Comparison of the turbulence intensity pro-
files at different locations in the downstream direction of
the grid. x/ML = 45(◦), x/ML = 50(�), x/ML = 55(⊳),
x/ML = 60(⊲), x/ML = 65(∗), x/ML = 75(⋄).

Figure 4 suggests that the turbulence intensity (u′2) de-
creases at a faster rate for the larger mesh side than for the
smaller mesh side. This is confirmed in figure 5, which
shows the streamwise variation of u′2 for both large and
small mesh grids. The data are represented in log-log scales.
Further, both decays appear to follow a power law, u2 ∼ xn,
with n being negative.
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x/ML x/MS λL λS RλL
RλS

ηL(mm) ηS(mm)

45 135 0.0050 0.0048 49.00 21.32 0.3620 0.5269

50 150 0.0054 0.0053 51.02 22.34 0.3875 0.5640

55 165 0.0056 0.0054 48.36 21.19 0.4074 0.5893

60 180 0.0059 0.0059 50.02 23.00 0.4255 0.6236

65 195 0.0060 0.0060 48.00 22.89 0.4354 0.6328

75 225 0.0065 0.0067 51.81 24.00 0.4603 0.6880

Table 1. Experimental parameters at the centre of the larger mesh and smaller mesh grid; Subscripts S and L correspond to
the small and the larger meshes.
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Figure 5. Decay of u′2 downstream of the larger mesh
grid, ML (◦), and smaller mesh grid, Ms (�).

The energy production across the SML is accompanied
by a increase of the mean turbulent kinetic energy dissipa-
tion ε as illustrated in figure 6, which shows its lateral distri-
butions at several downstream locations from the grid. The
isotropic form εiso = 15ν < ( ∂ u

∂ x )
2 > is used as the surrogate

for ε , while the Taylor hypothesis is assumed to convert
the temporal derivatives to spatial derivatives. Similar to
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Figure 6. Comparison of the energy dissipation rates pro-
files at different locations in the downstream direction of
the grid. x/ML = 45(◦), x/ML = 50(�), x/ML = 55(⊳),
x/ML = 60(⊲), x/ML = 65(∗), x/ML = 75(⋄).

the turbulence intensity, εiso decreases with increasing x/M,
while it decreases faster downstream of the larger mesh grid
than the smaller mesh grid.

We conclude this section by showing in figure 7 the
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Figure 7. Lateral distributions of Reynolds number at sev-
eral downstream positions

transversal distributions of Rλ for several downstream lo-
cations. While the figure will be commented later, one can
notice an interesting feature: the distributions present a dou-
ble peak and they all go through a fixed point at y/Ms = 0,
which suggests that Rλ is constant on the centreline, hinting
that SP is likely to be attained.

VELOCITY STRUCTURE FUNCTIONS
Figures 8 and 9 show the distributions of the second-

and the third-order velocity structure functions, < (δu)2 >
and < (δu)3 >, where δu = (u(x+ r)−u(x)) (r is the lon-
gitudinal spatial increment obtained using the Taylor hy-
pothesis) measured on the centreline at various downstream
locations. The data are normalised by u′ and λ .

Both quantities present a remarkably good collapse
at all separations r. Although not show here, a similar
collapse is observed when the data are normalised by the
Kolmogorov scales. This indicates that both sets of scal-
ing parameters are equivalent, which is consistent with the
decay turbulence in SP. Veeravalli & Warhaft (1989) who
also measured the decay of turbulence in a SML behind a
perforated grid, reported that SP was not achieved in the
region smaller that x/ML ≤ 36. Their facility prevented
them to go beyond that location. This suggests that SP
may not be achieved when the distance is not large enough,
and would explain why Veeravalli & Warhaft (1989) could
not have observed such behaviour. However, they reported
that SP was achieved in the SML developing behind the
bar grids. Measurements are currently being undertaken
to assess whether SP can be observed or not in the region
x/ML ≤ 45.

If collapse of < (δu)2 > and < (δu)3 > which is
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Figure 8. Second-order velocity structure function on the
centreline of the grid at several downstream locations.

consistent with SP, then we can express < (δu)2 > and
< (δu)3 > in their SP form:

< (δu)2 >= u∗2 f (r/l) (1)

and

< (δu)3 >= u∗3g(r/l), (2)

where u∗ and l are the velocity scale and the length scale
(e.g. u′ and λ , or uK and η) functions of x only; f and g are
functions of the normalised distance r/l only. If now we
write the skewness of δu

Sr ≡
(δu)3

[(δu)2]3/2
(3)

as

Sr =
g(r/l)
f (r/l)

= h(r/l), (4)

we see that SP then implies that Sr is also a function of
r/l. Thus, one expects that the distributions of Sr along the
centreline to collapse onto a single curve. This is indeed ob-
served in figure (10), which shows the centreline variations
of the distribution of Sr as a function of r/η . There is an
almost perfect collapse of the distributions as predicted by
SP; the collapse appears less evident at small r/η , reflecting
the difficulty to experimentally resolve these scales.

ON THE ENERGY SPECTRUM IN THE MIXING
LAYER REGION

The results presented above are consistent with a SP
at all scales on the centreline. To further verify that this is
indeed the case, we present the one dimensional velocity
spectrum along the centreline (Figures. 11 and 12, k is the
wavenumber in the streamwise direction). SP at all scales
should result in the collapse of the velocity spectra at all
wavenumbers, regardless of the scaling length and scaling
velocity used to normalise the spectra. In figures 11 and
12, the spectra are normalized by the Kolmogorov scales
(η , vK ; the symbol ∗ represents Kolmorogov normalisa-
tion) and (λ , u′), respectively. There is a very good collapse
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Figure 9. Third-order velocity structure function on the
centreline of the grid at several downstream locations.
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Figure 10. Profiles of Sr on the centreline of the grid at
several downstream locations.

at all wavenumbers when both sets of scaling variables are
used. For comparison, figure 13 shows the Komogorov nor-
malised spectra at the same streamwise location but down-
stream of the small mesh grid section (y/Ms = 5). At this
off-centreline position the velocity spectra present a col-
lapse only for k∗ ≥ 1×10−1 (i.e. small scales).
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Figure 11. Kolmogorov-normalized velocity spectra at
different locations along the the centreline of the grid.

The collapse of the spectra is consistent with the dis-
tributions of Rλ shown in figure 7. At the centreline Rλ
appears to be constant in x while it varies at y/Ms = 5 as x
increases. The constancy of Rλ along the centreline is well
illustrated in figure 14, which presents the centreline distri-
bution of Rλ . The reason why Rλ is constant (or equiva-
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Figure 13. Energy spectrum at different Rλ in different
downstream location where y/Ms = 5.

lently why SP is reached) on the centreline is not clear and
an analysis is being currently carried out to shed some light
on this issue. At this stage of the study, one can speculate
that it is likely that the ”transfer” of energy from the ex-
ternal quasi-homogeneous flow regions to the SML region
(which results in a production-like energy) plays a role in
the establishment of SP on the centreline. In any case, it
is the first time that the SP is shown to be achieved in this
particular grid turbulence, which provide an opportunity to
investigate SP in a mean shearless decaying turbulence.
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Figure 14. Distribution of Rλ along the centreline of the
grid

CONCLUSION

Hot wire measurements are carried out in a SML de-
caying grid turbulence. The SML is generated between
two grid with two different mesh sizes (mesh ratio of 3:1)
but identical solidity placed side by side. It was verified
that there is no mean velocity gradient across the mix-
ing layer. As the energy decays with the distance, down-
stream of the composite grid, energy is transferred from the
external quasi-homogeneous flow regions to the SML re-
gion. More energy is transferred from the large mesh grid
than the small mesh grid. This energy transfer is consis-
tent with a mechanism proposed by Veeravalli & Warhaft
(1989), which induces production terms in the equations of
the second-order and third order moments for u and v. In-
vestigation is being carried out in the region closer to the
grid (x/ML < 45) to shed some light into this mechanism
and its effect on the decay of turbulence. For example, it
is observed that the interaction between the two grid turbu-
lence leads to SP at all scales along the centreline of the
composite grid, as illustrated by the constancy of the Taylor
microscale Reynolds number and the collapse of the veloc-
ity spectra at all wavenumbers when normalised with the
Kolmogorov scaling variables or the pair (u′, λ ).
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