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INTRODUCTION
In this paper, a new system of governing equations for

spherically-averaged descriptors is derived for predicting
incompressible homogeneous turbulent flows in the pres-
ence of arbitrary mean velocity gradients. First, the equa-
tions governing the second-order spectral tensorR̂i j(kkk, t)
are closed with the Eddy-Damped Quasi-Normal Marko-
vian (EDQNM) approximation. Then, a representation of
R̂i j(kkk, t) in terms of spherically-averaged descriptors is in-
jected in its closed governing equations, and the latter are
integrated analytically over spheres of radiusk = ‖kkk‖. This
procedure allows to circumvent the practical difficulties that
arise from thekkk dependence of̂Ri j(kkk, t). A remarkable fea-
ture of this model is that it makes a disctinction between di-
rectional anisotropy and polarization anisotropy, which are
treated separately. Spherical averaging allows to obtain a
model for anisotropic turbulence that is as versatile as the
classical EDQNM model for isotropic turbulence, i.e. this
model can calculate anisotropic turbulent flows at both very
high and low Reynolds numbers, with good resolution of
both large and small scales and over very long evolution
times. However, spherical integration entails a loss of infor-
mation, and the upper boundary of anisotropy intensity that
can be investigated with the present model is derived from
realizability conditions.

Several flow configurations are considered to assess the
validity of the present model. A satisfactory agreement with
experiments of grid-generated turbulence subjected to suc-
cessive plane strains is observed, which confirms the capa-
bility of the model to account for production of anisotropy
by mean flow gradients. The case of homogeneous turbu-
lence subjected to a constant pure plane shear is also in-
vestigated. In addition to recovering typical spectral slopes
for energy and cross-correlation spectra, the subtle interplay
between linear and nonlinear effects is reproduced, yielding

the eventual exponential growth of the turbulent kinetic en-
ergy.

CLOSED EQUATIONS FOR R̂i j(kkk, t)
The present model is derived starting from the govern-

ing equation for the second-ordrer spectral tensorR̂i j(kkk, t),
which is the Fourier transform of the two-point second-
order correlation tensorRi j(rrr, t) =

〈
ui(xxx, t)u j(xxx+ rrr, t)

〉
,

whereui(xxx, t) is the fluctuating velocity field,rrr the vector
separating the two points in physical space, and the oper-
ator 〈〉 denotes ensemble average. Starting from a trace-
deviator splitting ofR̂i j(kkk, t) restricted to the plane normal
to the wave vectorkkk by virtue of incompressibility, it can be
shown (Cambon & Jacquin, 1989) that this tensor is gener-
ated from scalar spectra according to:

R̂i j(kkk, t) = E (kkk, t)Pi j(kkk)+ℜ
(
Z(kkk, t)Ni(kkk)N j(kkk)

)
(1)

E (kkk, t) is the energy density in 3D Fourier space, the dif-
ference betweenE (kkk, t) and its spherical average allows
to quantify directional anisotropy, whereasZ(kkk, t) charac-
terizes polarization anisotropy, or tensorial anisotropyat a
given wave vector.Pi j(kkk) denotes the projection operator
onto the plan perpenticular tokkk andNi(kkk) refers to the heli-
cal modes (Sagaut & Cambon, 2008). By virtue of this de-
composition, the governing equation forR̂i j(kkk, t) is equiva-
lent to a set of two equations in terms of the scalarsE (kkk, t)
andZ(kkk, t):

(
∂
∂ t

−λlnkl
∂

∂kn
+2νk2

)
E (kkk, t)−E (kkk, t)Si jαiα j

+ℜ
(
Z(kkk, t)Si jNiN j

)
= T (E )(kkk, t)

(2)
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(
∂
∂ t

−λlnkl
∂

∂kn
+2νk2

)
Z(kkk, t)−Z(kkk, t)Si jαiα j

+E (kkk, t)Si jN
∗
i N∗

j −2iZ(kkk, t)

(
Wl

2
αl −ΩE

)
= T (Z)(kkk, t)

(3)

whereNi = Ni(kkk), αi = ki/k, Si j is the symmetric part of
the mean velocity gradientλi j, which is space uniform, and
Wi is linked to its antisymmetric part. The generalized Lin
equations (2)-(3) also involve the nonlinear transfer terms
T (E )(kkk, t) and T (Z)(kkk, t), which are expressed in terms of
a third-order spectral tensor. The expressions ofT (E )(kkk, t)
andT (Z)(kkk, t) are closed and written in terms of the scalars
E (kkk, t) and Z(kkk, t) via an EDQNM approximation, which
states that the fluctuating velocity probability distributions
are not too far from normal distributions (Millionschikov,
1941). Thus, the governing equations for third-order cor-
relations can be closed. The departure from normal law
is taken into account via an eddy-damping term that al-
lows to preserve realizability (Orszag, 1970). As a com-
plementary assumption, the proper memory of triple cor-
relations is truncated via a Markovianization procedure in
order to simplify their closed expressions. Since turbu-
lent flows interacting with mean velocity gradients leading
to kinetic energy production are considered in the present
work, the simplest EDQNM version, where explicit effects
induced by mean gradient are discarded in the expressions
of third-order correlations, is employed here. This is in con-
strast with previous EDQNM models dealing with turbulent
flows dominated by interacting dispersive waves (Cambon
& Jacquin, 1989).

GOVERNING EQUATIONS FOR
SPHERICALLY-AVERAGED DESCRIPTORS

Even closed, thekkk dependence ofE (kkk, t) and Z(kkk, t)
makes equations (2)-(3) difficult to be solved from a prac-
tical point of view. The expressions of the nonlinear tran-
fer termsT (E )(kkk, t) and T (Z)(kkk, t) closed by the EDQNM
approximation involve integrals over the 3D Fourier space
that are coslty to evaluate. In order to circumvent these dif-
ficulties, one solution is to integrate analytically the closed
Lin equations (2)-(3) over spheres of radiusk = ‖kkk‖. This
analytical integration requires a representation of the tensor
R̂i j(kkk, t). Here, we choose the representation of Cambon &
Rubinstein (2006) which is written in terms ofE (kkk, t) and
Z(kkk, t) as:

E (kkk, t) =
E(k, t)
4πk2

(
1−15H(dir)

i j (k, t)αiα j

)
(4)

Z(kkk, t) =
5
2

E(k, t)

4πk2 H(pol)
i j (k, t)N∗

i (kkk)N
∗
j (kkk) (5)

Equations (4)-(5) involve the tensorsH(dir)
i j (k, t) and

H(pol)
i j (k, t) that depend only onk and measure respectively

directional anisotropy and polarization anisotropy accord-
ing to:

2E(k, t)H(dir)
i j (k, t) =

∫∫

Sk

R̂(dir)
i j (kkk, t)d2kkk (6)

2E(k, t)H(pol)
i j (k, t) =

∫∫

Sk

R̂(pol)
i j (kkk, t)d2kkk (7)

where R̂(dir)
i j (kkk, t) and R̂(pol)

i j (kkk, t) refer respectively to the

directional and polarization parts ofR̂i j(kkk, t). E(k, t) is the
kinetic energy spectrum and

∫∫
Sk

d2kkk denotes integration
over a spherical shell of radiusk. Injecting this represen-
tation into equations (2)-(3) allows to integrate analytically
the latter over spheres of radiusk and to derive a system of
equations in terms of the spherically-averaged descriptors

E(k, t), H(dir)
i j (k, t) andH(pol)

i j (k, t). The latter completely

determine the second-order spectral tensorR̂i j(kkk, t) accord-
ing to (4)-(5). The resulting system is of the form:

(
∂
∂ t

+2νk2
)

E(k, t) = S L(k, t)+T (k, t) (8)

(
∂
∂ t

+2νk2
)

E(k, t)H(dir)
i j (k, t) = S

L(dir)
i j (k, t)+S

NL(dir)
i j (k, t)

(9)
(

∂
∂ t

+2νk2
)

E(k, t)H(pol)
i j (k, t) = S

L(pol)
i j (k, t)+S

NL(pol)
i j (k, t)

(10)

The tensorsS L(k, t), S
L(dir)
i j (k, t) and S

L(pol)
i j (k, t) ac-

count for the interactions with the mean flow and are de-
rived from the linear terms in (2)-(3), whereasT (k, t),

S
NL(dir)
i j (k, t) and S

NL(pol)
i j (k, t) correspond to nonlinear

transfer terms and are derived from the expressions of
T (E )(kkk, t) and T (Z)(kkk, t) closed by the EDQNM approxi-
mation. The expressions of these tensors can be found in
Monset al. (2015).

Spherical averaging allows to significantly reduce the
computational cost, but also implies a loss of information.It
can be shown that the representation (4)-(5) corresponds to
the first-order truncation of expansions of the scalarsE (kkk, t)
andZ(kkk, t) in terms of spherical harmonics (Cambon & Ru-
binstein, 2006). The degree of anisotropy permitted by the
representation (4)-(5) is derived from the realizability con-
dition E (kkk, t)> 0∀kkk, t, which is equivalent to:

max
i

Λi

(
H(dir)(k, t)

)
≤ 1

15
∀k, t (11)

where Λi

(
H(dir)(k, t)

)
refers to the eigenvalues of

H(dir)
i j (k, t).

COMPARISON WITH THE EXPERIMENTS OF
GENCE AND MATHIEU

In the experiments of Gence & Mathieu (1979, 1980),
a plane strain is first applied to quasi-isotropic grid-
turbulence. A second strain is then applied whose princi-
pal axes have been rotated an angleα in the plane of the
first strain. The mean-velocity gradients corresponding to
the first and second strains are, respectively:

λ =




0 0 0
0 S 0
0 0 −S


 , λ =




0 0 0
0 Scos(2α) −Ssin(2α)
0 −Ssin(2α) −Scos(2α)




(12)
In Gence & Mathieu (1980), the original experimen-

tal device is extended in such a way that the turbulence
can develop downstream without a mean-velocity gradient.
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Figure 1: Evolution of the invariantII versus the position
in the distorting duct of lengthLd for the experiments of (a)
Gence & Mathieu (1979) and (b) Gence & Mathieu (1980).
Symbols correspond to experimental data and lines are ob-
tained with the system of governing equations (8)-(10). Var-
ious values of the angleα between the principal axes of
the two successive plane strains are investigated:α = 0
(�, ), α = π

8 (+, ), α = π
4 (◦, ), α = 3π

8
(△, ) andα = π

2 (×, ).

For these experiments,S ≃ 2.9τ−1
0 with τ0 = K (0)/ε(0).

K (t) andε(t) refer to the turbulent kinetic energy and the
dissipation rate respectively, and the origin correspondsto
the entrance of the distorting duct. The simulations are ini-
tialized with a Taylor microscale-based Reynolds number of
Reλ = 60. Experimental data for the downstream evolution
of the invariantII defined by:

II(t) = bi j(t)b ji(t), bi j(t) =

〈
uiu j

〉
(t)

2K (t)
− δi j

3
(13)

are reported in figure 1 along with numerical results ob-
tained with the system of governing equations (8)-(10).
This figure shows a good agreement between experimental
and numerical results, especially taking into account the un-
certainty in the initial condition and a possible homogeneity
fault in the experimental device. The system of governing
equations (8)-(10) allows to correctly capture the evolution
of anisotropy, both in the straining regions and during the
relaxation phases. Only the period of return to isotropy
(RTI) for the angleα = π

4 is not fully satisfactory, mainly
because the boundary between the straining and relaxation
regions in the experiments does not appear to be as clear
as in the simulations. The case of straining without rota-
tion in the second part of the distorting duct (α = 0), fol-
lowed by a relaxation phase, is further illustrated in figure
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Figure 2: Evolution of (a) the anisotropy indicatorsb11
(△, ), b22 (�, ) andb33 (◦, ) and (b) that
of the turbulent kinetic energyK (◦, ) versus the po-
sition in the distorting duct of lengthLd for the experiment
in Gence & Mathieu (1980) without rotation in the second
part of the distorting duct (α = 0). Symbols correspond to
experimental data and lines are obtained with the system of
governing equations (8)-(10).

2. The present model properly captures the evolution of the
anisotropy indicatorsbi j and that of the turbulent kinetic en-
ergy, both in the region dominated by linear effects and in
the purely nonlinear one.

TURBULENCE SUBJECTED TO A
STRAINING-RELAXATION-DESTRAINING
CYCLE

The present model is further tested by comparing its
predictions with the experiment of Chenet al. (2006), where
a piston is used to apply plane straining and destraining on
turbulence generated by active grids. The mean-velocity
gradient in the experiment is of the form

λ (t) =




S(t) 0 0
0 −S(t) 0
0 0 0


 (14)

where the temporal evolution ofS(t) is given by figure
3(a). Initially, the mean flow corresponds to plane strain-
ing (S(t) > 0), until t/τ0 ≃ 0.5. After a relaxation phase
(0.5≤ t/τ0 ≤ 0.7), destraining (S(t) < 0) is applied to the
turbulence. In this experiment, the Reynolds number at the
begining of the straining cycle isReλ ≃ 400. The maxi-
mum value of the strainS(t) reached in the experiment is
≃ 9.5τ−1

0 . Figure 3(b) illustrates the temporal evolution of
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Figure 3: (a) Temporal evolution of the strainS(t) applied to
the turbulence; (b) experimental values (◦), numerical val-
ues obtained with the present model ( ) and RDT pre-
diction ( ) for the temporal evolution of the anisotropy
indicatorb̃11(t) in the experiment of Chenet al. (2006).

the anisotropy indicator̃b11(t), a two-component surrogate
of the anisotropic tensorbi j(t). Experimental and numer-
ical values obtained with the present model are reported,
along with the Rapid Distortion Theory (RDT) prediction,
provided by Chenet al. (2006), corresponding to the mean
flow defined by equation (14) and figure 3(a). The tempo-
ral evolution ofb̃11(t) shows good agreement between the
experiment and the present model. From the comparison
with RDT results, it appears that nonlinear phenomena are
significant on a quantitative level. This is partly due to the
presence of a relaxation phase in the straining cycle. Thus,
the validity of both linear and nonlinear contributions in the
system of governing equations (8)-(10) can be confirmed by
the comparison with this experiment.

HOMOGENEOUS SHEAR TURBULENCE
Finally, we address the case of homogeneous turbu-

lence subjected to a constant, maintained mean shear. The
corresponding mean-velocity gradient is given by:

λ =




0 0 S
0 0 0
0 0 0


 (15)

The simulation is initialized withReλ = 50, the shear
rate is fixed atS = 2τ−1

0 , and the turbulence is initially
isotropic. The temporal evolutions of the components
of the deviatoric tensorbi j(t) and that of the kinetic en-
ergy K (t) are reported in figure 4. Such an exponential

growth of the kinetic energy (figure 4(b)), which originates
from nonlinear energy redistributions (RDT predicts a lin-
ear growth forK (t)), is consistent with theoretical pre-
dictions (Tavoularis, 1985). Concerning results in spectral
space, the kinetic energy spectrumE(k, t) at St = 50 (fig-
ure 5(a)) displays a well-defined−5/3 slope in the iner-
tial range as reported in experiments or DNS. Figure 5(b)
reports the cross-correlation spectrumϕ13(k, t) at St = 50.

The latter evolves likek−
7
3 in the inertial range as predicted

theoretically and observed in experiments and DNS (Ishi-
haraet al., 2002). This result, along with the exponential
growth of the kinetic energy, supports the validity of the
nonlinear contributions in the present model in the case of
homogeneous shear turbulence.

CONCLUSION
A new model to calculate moderatly anisotropic flows

has been derived in the present study. Remarkable features
of this model are that it makes a distinction between di-
rectional anisotropy and polarization anisotropy, which are
treated separately, and that no heuristic tuning of arbitrary
constants is required. Analytical spherical averaging allows
a significant reduction in the computational cost compared
to other spectral models in 3D Fourier space. The EDQNM
approximation is employed for the closure of the nonlinear
transfer terms.

A satisfactory agreement with the experiments of
Gence & Mathieu (1979, 1980) has been observed, which
confirms the capability of the model to account for pro-
duction of anisotropy by mean flow gradients. The relax-
ation phases in these experiments are also correclty cap-
tured, which supports the validity of the nonlinear tranfer
terms. In addition, the model fits well the recent experiment
with straining-relaxaxion-destraining (Chenet al., 2006).
For turbulence continuously subjected to a pure plane shear,
the model ensures a correct asymptotic regime with con-
stant values for the components of the dimensionless de-
viatoric tensorbi j(t) associated to the Reynolds stress ten-
sor. The exponential growth of the turbulent kinetic energy
mediated by nonlinear pressure redistribution terms is re-
produced. Both−5/3 and−7/3 power laws are recovered
for the spherically averaged energy spectrum and its non-
diagonal component
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