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ABSTRACT
The transport equation of the mean turbulent energy

dissipation (ε) along the axis of a turbulent round jet is ex-
amined in the context of the scale-by-scale energy budget.
The previously well established(x−xo)

−4, wherexo is the
virtual origin, dependence ofε along the jet axis is shown to
be consistent with the limits at both small and large-scale of
this budget. It is found that the isotropic form of the trans-
port equation forε requires the sumSu+2Gu/Rλ to be con-
stant along the jet axis for given initial conditions, whereSu

is the skewness,Gu is the destruction coefficient andRλ is
the Taylor micro scale Reynolds number. These results are
consistent the theoretical analysis ofThiessetet al. (2014)
who showed thatSu + 2Gu/Rλ ∼ R−1

λ . The way that the
sumSu+2Gu/Rλ approaches zero at highRλ , as required
for stationary isotropic turbulence, is discussed.

INTRODUCTION
The streamwise evolution ofε along the axis of a tur-

bulent round jet was investigated byFrieheet al.(1971) and
Antoniaet al. (1980). It is generally accepted that in turbu-
lent flows and whenRλ is large,ε follows the relation

ε =Cε
u′3

Lu
, (1)

whereLu andu′ are the integral length scale and thermsof
the longitudinal velocity fluctuation, respectively, andCε is
an empirical constant. In decaying turbulent flows, such as
grid-generated turbulence, a plane wake and a round jet,Lu

andu′ are function of the distance(x−xo) (xo is the virtual
origin). On the axis of a round jet, the streamwise variations
of Lu andu′ vary with(x−xo) and(x−xo)

−1, respectively,
while Lu ∼ (x− xo)

1/2 and u′ ∼ (x− xo)
−1/2 on the cen-

treline of a self-preserving plane wake. Consequently, the
streamwise evolution ofε is proportional to(x−xo)

−4 for a
round jet and(x−xo)

−2 for a plane wake.Mi et al. (2013)
established that the prefactor forε ∼ (x− xo)

−4 ceases to

depend on the Reynolds numberReD (≡ U jD/ν, where
U j is the jet exit velocity andD is the nozzle diameter)
when ReD exceeds 104. Note however that the condition
Cε = const is not essential for deriving the power-law de-
pendence(x−xo)

−4 of ε. Self-preservation is sufficient for
this purpose.

Self-preservation (hereafter denoted SP) rests on the
assumption that the flow is governed by a set of length
and velocity scales.Townsend(1956) carried out a sys-
tematic SP analysis on the mean momentum and mean
turbulent kinetic energy equations for various turbulent
flows (wake, jet and wall flows). More relevant to the
present work, SP has been used to describe the stream-
wise evolution of one-point turbulent statistics in a turbu-
lent round jet (George(1989); George & Gibson(1992);
Panchapakesan & Lumley(1993)). Using a SP analysis,
George(1989) showed that, for a given turbulent round jet,
the streamwise variation of the length and velocity scales
are not universal and may depend on the initial conditions.
His SP analysis is supported by experimental evidence (e.g.
George(1989); George & Gibson(1992); Wygnanskiet al.
(1986)). Extending the SP analysis to two-point statistics is
expected to provide a further assessment of the evolution of
the turbulence at a given scale.Ewinget al. (2007) carried
out a SP analysis on the governing equations for the two-
point velocity correlation in a turbulent round jet. However,
their analysis cannot predict the power-lawε ∼ (x−xo)

−4

along the axis of the jet. On the other hand,Thiessetet al.
(2014) who carried out a SP analysis on the transport equa-
tion of (δu)2 ((δu) = u(x+ r)−u(x) is the velocity incre-
ment in the longitudinal direction, andr is the separation
between 2 points) on the axis of the jet not only showed
thatε follows the lawAε(x−xo)

−4 but they were also able
to derive a theoretical expression for the prefactorAε .

The transport equation of(δu)2 on the jet centreline,
which can be seen as the energy budget at each spatial sep-
arationr from the smallest to the largest scale, is given by:
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−(δu)3+6ν
∂ (δu2

∂ r
− 3

r4

∫ r

0
s4U

∂ (δu)2

∂x
ds

− 3
r4

∫ r

0
s42

(
(δu)2− (δv)2

) ∂U
∂x

ds=
4
5

εr.

(2)

Burattini et al. (2005b,a) provided adequate experimental
support for (Eq.2). At the large separations, Eq. (2) yields
the one-point budget ofq2

−1
2

U
∂q2

∂x
−
(

u2−v2
) ∂U

∂x
= ε, (3)

whereq2 = u2+2v2 by virtue of axisymmetry. This equa-
tion shows thatε represents the balance between the advec-
tion and production (1st and second terms, respectively, on
the left side). Note that the pressure-transport term in Eq.
(3) is neglected as was done byPanchapakesan & Lumley
(1993), Burattiniet al. (2005a) andTaubet al. (2013).

The application of a SP analysis to Eq. (2), shows
that the round jet can satisfy simultaneously solutions at
all scales provided any characteristic Reynolds number is
constant. This implies that the Reynolds number based on
any characteristic length scale (e.g.λ , η, L or δ , the Taylor-
micro scale, Kolmogorov length scale, the integral length,or
half-width of the jet) and velocity scale (e.g. u′ or vK , the
Kolmogorov velocity scale) is constant. Therefore, a round
jet satisfying SP admits a SP solution that is independent
of the SP variables used.Thiessetet al. (2014) extended
the analysis ofBurattini et al. (2005a) and examined con-
sequences of self-preservation for Eq. (2) on the axis of
a round jet. By assuming local isotropy and a power law
decay they showed that Eq. (2) can be reduced to

Su+2Gu/Rλ =
90

7(2+R)Rλ
(4)

in the limit of r → 0, with

Su =
(∂u/∂x)3

(∂u/∂x)2
3/2

(5)

Gu = u2 (∂u/∂x)2

(∂u/∂x)2
2 (6)

and R = v2/u2. Su is the velocity derivative skewness
and Gu is the destruction coefficient, sometimes referred
to as the palinstrophy coefficient; they represent the pro-
duction and dissipation ofε, respectively. The relation
(4) highlights the dependence between large and small
scales through the large scale anisotropy ratioR for finite
Reynolds numbers. AsRλ → 0, Su + 2Gu/Rλ → ∞, in-
dicating that large and small scales becomes uncorrelated
as the Reynolds number becomes very large; it further in-
dicates that the small-scale motions approach stationary as
Rλ → ∞. Interestingly,Thiessetet al. (2014) compared Eq.

4 with its counter part in grid turbulence and found that the
small scales approach to stationarity differently betweenin
two flows.

The present study aims at complementing and extend-
ing the work ofThiessetet al. (2014). We experimentally
investigate the consequence of SP on the transport equa-
tion of ε. In particular, terms of Eq. (4) are measured and
their streamwise evolution assessed along the centreline of
the turbulent round jet at several Reynolds numbers ranging
from 104 to 105. We will also briefly discuss the behaviour
of eq. (4) asRλ increases.

EXPERIMENTAL SETUP
The turbulent jet is generated by an open circuit wind

tunnel. A contraction is attached to the tunnel exit with an
area contraction of 85 : 1. The jet exits through a nozzle
having a diameterD = 55mm. A circular plate of diameter
100mm was mounted at the nozzle exit and flush with the
nozzle exit section to improve the jet flow at the exit, which
had a top-hat velocity profile; the incoming boundary layer
at the nozzle lip is laminar, although not quite Blasius. The
Reynolds numbersReD, based on the exit velocity,U j , and
D, was varied from about 10000 to 100000. The velocity is
measured with a single hot-wire etched fromPT−10%Rh
to a diameter ofdw = 1.2µm and the active lengthlw was
chosen so as to have an aspect ratiolw/dw of nearly 200.
Further details of the experimental setup can be found in
Burattini et al. (2005a).

Hot wire velocity measurements in turbulent flows may
lead to various problems if care is not taken. One such
problem relates to the use Taylor’s hypothesis, to convert
temporal statistics to spatial statistics. This hypothesis is
acceptable when the relative turbulence intensity,u′1/U , is
small. In this case, the convection velocity is assumed to be
constant and equal to the mean velocity. In the far field
of an axisymmetric jet, the turbulence intensity is about
25% (Mi et al. (2013)) which can lead to non negligible er-
rors to statistical results. To remedy this problem, in the
present work, we applied a correction to the instantaneous
velocity signal. A modified version of Taylor’s hypothesis
(MTH) has been used based the method implemented by
Kahalerraset al.(1998). The effect of the spatial correction
is significant on the statistics of the velocity fluctuations,
such as the 1D energy spectrum ofu as shown Figure (1).
This shows that the major effects of MTH are concentrated
at the high wave numbers of the spectrum,i.e. at the small
scales. MTH helps to minimise the ”artificial energy” added
at the high wave numbers by the use of Taylor’s hypothesis,
as observed in Figure (1). In the context of this work, the ap-
plication of the MTH is essential for calculating accurately
turbulent quantities, such asε, Rλ , Su or Gu, quantities that
are the focus of this study.

RESULTS
Thiessetet al. (2014) showed that carrying out a SP

analysis on Eq. (2) on the centreline of the turbulent round
jet leads to the following SP solution forε:

εD

U3
J

= Aε

(
x−xo

D

)−4

(7)

whereAε is constant. Further,Thiessetet al. (2014) pro-
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Figure 1. The effect of Taylor’s hypothesis on the ve-
locity spectrum on the axis of the axisymmetric jet for
ReD = 8.9×104.
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Figure 2. Axial variation ofAε versusx/D for ReD = 1×
105. The value ofAε inferred from the expression (8) is
marked by an arrow.

posed an expression forAε of the form

Aε = (2+R)A3
U A2

I (8)

where AU is the prefactor of the power-law(U/UJ =
Au((x− xo)/D)−1 for the mean velocity,U , and AI =

(
√

u2/U).
Figure (2), which shows the centreline variation ofAε ,

indicates thatAε becomes constant forx/D ≥ 45, marking
thus the start of SP solutions on the jet axis. The values

shown in figure (2) are obtained by plottingεD
U3

J

( x−xo
D

)4
,

wherex0 was found to be about 4.5D; xo was obtain from
the distributions ofu2/U2. The values ofAε shown in Fig-
ure (2) and lying on the plateau are about 9% larger than the
value inferred from the relation (8), whereR= 2/3 andAU

andAI , estimated from the measurements, are about 6 and
0.25, respectively. Interestingly, the value ofAε proposed
by Frieheet al. (1971) and commonly used is 48,i.e. about
33% larger than the present predicted value.Thiessetet al.
(2014) argued that any differences between the predicted
and measured values ofAε are mainly associated with an
error in xo. Indeed, a variation inxo may impart a non
negligible variation in(x− xo)

4 and thus affect the value
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Figure 3. Axial variation ofε versusx/D. �: ReD =

8.9× 104, ♦: ReD = 1× 105. The line is calculated with
expression (8) whereAε = 39 andxo/D =−4.5

of Aε when it is estimated experimentally from the plot
εD
U3

J

( x−xo
D

)4
. Nonetheless, the present relatively good agree-

ment between the predicted and measured values ofAε in-
dicates that not only the value ofxo seems correct but the
neglect the viscous diffusion and pressure transport terms
in Eq. (2) seems justifiable.

Examples of the centreline variations ofεD
U3

J
are re-

ported in Figure (3) for ReD = 8× 104 and 1× 105. The
isotropic formε iso = 15ν(∂u/∂x)2 was used to estimateε.
Since we are investigating the isotropic form for Eq. (2) in
the limit of r → 0, we useε iso as the surrogate ofε in the
rest of the paper. It should be noted that some justification
for identifying ε with εiso is provided by earlier measure-
ments of all the temperature dissipation rate which seemed
to satisfy isotropy reasonably well on the axis of the jet
(Antonia & Mi (1993) and Darisseet al. (2014)). The SP
analysis ofThiessetet al. (2014) on Eq. (2) shows thatε
should vary asx−4 on the centreline of the jet. This is well
confirmed in the far field of the jet as illustrated in Figure
(3), which showsεD

U3
J

versus(x−xo)/D. The predicted val-

ues of εD
U3

J
calculated from expression (8) with Aε = 39 and

x0 =−4.5D are also reported in the figure (see the the solid
line) and match very well the data for(x−xo)/D ≥ 40.

The SP behaviour ofε shown in Figure (3) should,
in conformity with the SP analysis as applied to Eq. (2),
require the constancy ofRλ . This is indeed observed in
Figure (4), which shows the centreline evolution ofRλ for
several values of the jet Reynolds numberReD. The data
of Mi et al. (2013) andBurattiniet al. (2005a) are also re-
ported in the figure. Note that forReD = 1×104, Rλ does
not appear to be constant suggesting that SP is not satis-
fied at this Reynolds number. WhenReD ≥ 2×104, Rλ ex-
hibits a clear plateau over a significant range ofx/D. Note
though that the beginning of the plateau (i.e. start of SP so-
lutions) moves downstream asReD increases. For example,
SP starts atx/D ≃ 15 and 40 whenReD = 3.4× 104 and
13× 104, respectively. The figure clearly reveals that the
higherReD is, the largerx/D should be before SP is reached
(or can be observed). For example, whenReD ≥ 1× 105,
one is required to carry out measurements beyondx/D at
least equal to 30 to start to observe the jet evolving in SP
manner.

The centreline evolution of bothε andRλ confirms that
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SP is well satisfied in the present turbulent round jet. Note
that sinceRλ is constant during the decay then the left term
of Eq. (4) must also be constant (under the condition thatR
remains constant). This indicates that the balance between
the production and destruction ofε, Su andGu, respectively,
remains constant during the decay. In that context, it is of
interest to assess the individual behaviours of bothSu and
Gu.

Figures5 and (6) show the centreline variations ofSu

and Gu/Rlambda for ReD = 2× 104 and 8.9× 104. Both
quantities reach a plateau after some downstream distance.
The constancy ofSu and Gu/Rλ suggests that a dynami-
cal equilibrium is attained between the production and de-
struction ofε which explains the emergence SP solutions.
However, as in the case of the centreline evolution ofReλ
(fig. (4)), the distancex/D before the plateau is reached
increases asReD increases. Thus, it appears that the estab-
lishment of the dynamical equilibrium is also function of
the jet Reynolds number; the higherReD is, the longer it
takes for the turbulence decay to reach its equilibrium.

Since bothSu and Rλ are constant,Gu must also be

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

x/D

G
u
/
R

λ

Figure 6. Centreline variation ofGu/Rλ . Symbols same
as in fig. (5).

constant. While it may not be simple to show thatGu/Rλ is
constant when SP is satisfied, the constancy ofSu can easily
be shown as follows.Su can be expressed as

Su = limr→0
(δu)3

(δu)2
3/2

(9)

Since SP solutions for eq. (2) are sought in the form of

(δu)2 = u∗2 f (r/l) (10)

and

(δu)3 = u∗3h(r/l) (11)

at all scales, whereu∗ is a scaling velocity andl a scaling
length, then it is evident thatSu must be constant since the

ratio h(r/l)
f (r/l)3/2 is constant at all scales, which includes the

scales whenr → 0, in the SP region of the jet. Interestingly,
this shows that SP solutions to single-point equations must
also be compatible with SP solutions to two-point equa-
tions. Accordingly, one expects that a two-point SP analysis
provides more information than a single-point SP analysis.
Note though that carrying out a SP analysis to Eq. (3) can
lead to the power-lawε ∼ x−4. Indeed, applying a SP analy-
sis to the mean momentum equation (e.g.Townsend(1956))
leads toq2 ∼ u2 ∼ v2 ∼ x−2 andU ∼ x−1, which, when
substituted into eq. (3), yieldsε ∼ x−4, as it should be.

Having established thatRλ , Su and Gu are constant
when the turbulence decays in a SP manner on the cen-
treline of the round jet, we shift our attention to the rela-
tion (4). The relation has been analysed byThiessetet al.
(2014) in the context of the approach toward the asymptotic
state at infinite Reynolds number. This approach is repre-
sented in Figure (7), which shows the expression 90

7(2+R)Rλ
with R= 2/3 as function ofRλ ; the measured values of
the sumSu + 2Gu/Rλ for ReD = 2× 104 and 8.9× 104

are also reported on the figure. The experimental data ap-
pear to be in a relatively good agreement with the theoret-
ical prediction, to within the uncertainty errors. It is evi-
dent though that beyond a value ofRλ ≥ 200, the compari-
son between theory and measurement is difficult, since the
values ofSu+2Gu/Rλ fall within the measurement uncer-
tainty. The comparison should be better assessed at lower
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Reynolds numbers whereSu + 2Gu/Rλ is relatively large
and beyond the measurement uncertainty.

The predicted trend of (Su + 2Gu/Rλ ) as Rλ → ∞,
which is consistent with the experimental data, shows that
the balance between the production and destruction ofε
must decrease with increasing Reynolds number. Eventu-
ally whenRλ → ∞ the right side of (4) becomes zero, which
corresponds to steady state solutions and one recovers the
Kolmogorov hypothesis which states that at a very high
Reynolds number the small-scale motions are in a steady
state.

Eq. (4) shows that the large-scale anisotropy parame-
ter R plays a role in the approach toward the steady state,
although that role diminishes with an increasingRλ . Ac-
cordingly, if one accepts thatR is dependent on the ini-
tial contritions, one must then envisage that the approach
(Su + 2Gu/Rλ ) → 0 asRλ → ∞ to be also dependant of
the initial conditions. It is then reasonable to expect, as
Thiessetet al. (2014) argued, that the route toward the sta-
tionarity may not be universal. Further, since the various
contributions from the large scales change in the transport
equation for(δu)2 across the jet, the relation (4) varies too.
Thus, one expects that the route to the steady state solutions
also will vary from position to position across the width of
a given jet. One can also argued that the route to stationar-
ity will change from flow to flow.Thiessetet al.(2014) dis-
cussed the route the small scales follow in decaying grid tur-
bulence, where if one assumesε = A(x−xo)

n−1 (n≤−1),
then the isotopic form corresponding to eq. (4) is given by
(e.gBatchelor & Townsend(1947),

Su+2Gu/Rλ =
90

7(2+R)

(
n−1

n

)
1

Rλ
. (12)

Clearly, asRλ increases, the sumSu + 2Gu/Rλ in grid
turbulent follows a route different to that on the centre-
line of the turbulent round jet, which, as pointed out by
Thiessetet al. (2014), casts doubts on the idea thatSu and
Gu follow a universal evolution asRλ → ∞.

CONCLUSION
Hot wire measurements are carried out on the axis of

a turbulent round jet to investigate the transport equationof
the mean turbulent kinetic energy dissipation rateε within
the framework of the scale-by-scale (sbs) energy budget
equation. The study completes and extends the analytical
work of Thiessetet al. (2014).

It is confirmed thatε ∼ Aε(x− xo)
−4 as predicted by

Thiessetet al.(2014) after applying a self-preservation (SP)
analysis to the sbs equation on the centreline of the jet. Fur-
ther, the measured values ofAε agree relatively well with
the prediction ofThiessetet al. (2014). Also, as required
by SP, the Taylor microscale Reynols numberRλ is found
to be constant along the centreline. However, it is observed
that the distancex/D beforeRλ becomes constant (i.e. that
SP is attained) increases with the jet Reynolds numberReD.

The isotropic form of the transport equation ofε, as
expressed by eq. (4), is analysed with the view to assess
the behaviour of its individual terms during the decay. The
measurements show that all individual terms of eq. (4) be-
come independent ofx/D when SP of attained. However,
the distancex/D before this is achieved increases with the
Reynolds number.

Finally, the measurements support the theoretical pre-
diction of Thiessetet al. (2014) which shows that the bal-
ance between the production and destruction ofε decreases
like C/R−1

λ , whereC is a constant. This shows that when
Rλ → ∞ the small scales approach stationarity. However,
because the constantC is controlled by the large-scale
anisotropy, the route toward stationary is likely to change
from position to position across the jet width. Further, since
the effects of large-scale anisotropy is felt differently from
flow to flow, one expects that different routes to stationarity
will be followed by different turbulent flows. This supports
the argument put forward byThiessetet al. (2014) that the
manner by which the small scales approach stationarity as
the Reynolds number increases is not universal and is flow
dependent.
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