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ABSTRACT

Turbulent jets have received considerable attention
during the last decades and the past century. However,
to our knowledge, one configuration has not received
much consideration yet. The latter concerns the viscosity-
stratified jet, wherein a turbulent jet of lower viscosity
issues into a density-matched host fluid of higher viscosity.
In this paper, we shed more light over some intricacies of
viscosity-stratified flows, by addressing two issues:
i) Experimental aspect. A propane jet issues into a
N2 (slight) coflow, for which the viscosity ratio is
Rv ≡ νN2/νpropane = 3.5. The Reynolds number of the jet
(based on the diameter, the initial velocity and the propane
viscosity), is of 8000. Experimental results are discussed,
for both velocity and scalar fields, in the axial plane of the
turbulent axisymmetric jet. It is shown that the presence of
a strong viscosity discontinuity across the jet edge results
in an increase of the scalar spread rate and of the turbulent
fluctuations.
ii) Analytical developments and consequences. One-and
two-point energy budget equations are developed for flows
in which the viscosity varies, as a result of heterogeneous
mixture. Additional terms are highlighted, accounting for
mean viscosity gradients or correlations between viscosity
fluctuations and kinetic energy fluctuations. These terms
are most likely present at both small and large scales, thus
rectifying the myth that viscosity is a small-scale quantity.
It is finally shown that, unlike the classical round jet issuing
into a host fluid with the same viscosity, the condition of
self-preservation on the jet axis is not necessarily satisfied
in variable-viscosity jets.

INTRODUCTION
The theory of Kolmogorov premises that at infinitely

large Reynolds numbers, the statistical properties of the
small scales should be determined universally by ν and ε
(the kinematic viscosity and the mean energy dissipation
rate). Implicit to this theory is that viscosity, considered
as one independent parameter of the flow, is a ’small scale’
quantity and thus should not affect large scale mixing. This
is one possible explanation for why most of the studies fo-
cus on variable-density flows (Pitts (1991), Amielh et al.
(1996)). Nonetheless, many flows deal with real fluids,
for which both density and viscosity fluctuate in space and
time.
One of the first studies devoted to effects of viscosity was
that of Campbell & Turner (1986). In order to determine
the composition of a magmatic layer, they studied the in-
jection of a fluid in a more viscous one (whose kinematic
viscosities are respectively νl and νh, indices ’l’ and ’h’
stand for ’low’ and ’high’ respectively), for several ratios
Rv =

νh
νl

spread from 1 to 400. Campbell & Turner (1986)
observed a very different behaviour for the two borderline-
cases. Indeed, mixing does not occur at all for the Rv = 400
case. This phenomenon is due to a competition between
the destabilizing inertial forces and the stabilizing viscous
ones at the interface. Thus, this study highlights that the
large scale mixing is in fact, greatly, viscosity-dependant
and that Variable-Viscosity-Flow (hereafter referred to as
VVF) should be carefully studied. Indeed, this kind of flow
is frequently encountered in industrial applications. To cite
one example, combustion processes involve fluids with dif-
ferent physical and chemical properties (e.g. fuel and oxi-
dizer).

Numerous questions, however, remain without clear
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answer. Some of them are fundamental, such as those deal-
ing with the rate of entrainment and the associated phe-
nomenology, or the exact expression of the mean energy
dissipation rate (Talbot et al. (2013), Lee et al. (2008))
which appears to be of great importance for flame stabiliza-
tion and quenching. Hence, it is necessary to perform some
quantitative experiments in more traditional aerodynamic
configurations (gaseous flow and relatively high Reynolds
number).

The present study aims at furthering our understand-
ing of variable-viscosity flows. The roadmap of the paper is
as follows. The first section details the experimental facil-
ity and results on the dynamic and scalar fields. Then, the
two-point scale-by-scale energy budgets are developed by
considering viscosity variations within the flow. The third
section aims at answering the question of similarity in VVF.
The last part is dedicated to conclusions.

EXPERIMENTAL STUDY
Experimental set-up. The flow facility in which the fol-

lowing results are obtained is a round jet of D = 30 mm di-
ameter surrounded by a (slight) coflow. Jet and coflow are
enclosed in order to get well defined boundary conditions
allowing future accurate numerical simulations (Fig.1). The

Figure 1. Experimental facility.

main jet issues from a contraction designed to ensure a ’top-
hat’ velocity profile at the nozzle exit. The initial turbulence
intensity is as low as 1%, thus ensuring that the measured
turbulent fluctuations do not find their origins in the injec-
tion.

The viscous effects are quantified by comparing the
following cases:
-Constant-Viscosity Flow (CVF), which is the baseline
case. A nitrogen jet issues in a coflow of nitrogen. The
viscosity ratio of the two fluids is Rv = 1.
-Variable-Viscosity Flow (VVF). A propane jet issues in a
coflow of nitrogen. The latter is 3.5 times more viscous
than the propane, so that Rv = 3.5. The density ratio is very
nearly equal to 1. The comparison between the two cases is
based on the same initial condition, i.e. the same initial jet
momentum, therefore the same injection velocity U1 = 1.45
m/s.

Measurements were performed in both configurations
for the 2-D velocity fields (by stereo-Particle Image Ve-

locimetry PIV) and for the scalar (by PLIF Planar Laser
Induced Fluorescence). The seeding for PLIF was done by
anisole for both configurations. Indeed, the lack of oxygen
allows us to use an aromatic tracer instead of classical ke-
tone one, which leads to an improved signal-to-noise ratio.

Results. Figure 2 illustrates instantaneous images of
the scalar distribution. Here Y is the propane concentration,
(or, the mixture fraction), normalized such as Y = 1 in the
propane core jet and Y = 0 in the N2 coflow. A careful
analysis of the scalar mixing provides a qualitative way to
compare the two flows. Whilst the constant-viscosity flow
exhibits classical Kelvin-Helmholtz vortices (Fig. 2, top),
the variable-viscosity flow (Fig. 2, bottom) only includes
a hint of the large-scale, lateral engulfment of the ambient
fluid, living together with mixing at scales distributed over
a much wider range.

Figure 2. Instantaneous images of mixing in N2/N2 jet
(top) and variable-viscosity (propane/N2) jet (bottom).

Planar distributions of the RMS (root mean squared)
of the scalar are represented in Fig. 3, for the very near
field of the flow, spanning between the 0 and 2 jet diam-
eters. Several observations may be done. First, the CVF
potential core is wider than that of the VVF, which suggests
a better mixing for the latter (Fig. 3, right-side). This state-
ment is corroborated by the presence of propane in the full
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field of view for VVF. This is in contrast with the N2/N2 jet,
where the core jet fluid (seeded N2) is completely absent on
the image edges. Second, the largest RMS values are not
located at the same axial locations: for the CVF flow, the
largest values of the scalar RMS are located at 2D, whereas
for the VVF, these maxima occur at much smaller down-
stream locations (0.5D−1D). This observation is to be un-
derstood in connection with the instantaneous images. The
intense fluctuations are strongly correlated with the pres-
ence of the large structure (Kelvin Helmoltz). For the VVF
case, while at x/D = 1 engulfment only occurs, the mixing
exhibits smaller and smaller scales at x/D = 2 . As far as

Figure 3. Planar distributions of the scalar RMS in CVF
(N2/N2 jet), image left-side, and VVF (Propane/N2 jet), im-
age right-side.

the CVF is concerned, only large-scale mixing occurs, thus
explaining that larger fluctuations are observed.

This observation is strengthened by the study of the
velocity field and more particularly of the mean lateral fluc-
tuations (not shown here), whose evolution is similar to that
of the scalar. Indeed, at a downstream position of one diam-
eter, the lateral fluctuations are more intense in VVF than in
CVF.

Moreover, a stronger decrease of the axial mean ve-
locity in VVF than in CVF is also noticeable, starting in
the very early stage of injection (Fig. 4), indicating an in-
creased entrainment of the ambient fluid into the jet fluid
and an accelerated trend towards self-similarity. Intense
values of the axial velocity fluctuations (Fig. 5) as well
as a faster trend towards isotropy (here quantified through
the ratio RMSu1/RMSu2 Fig. 6) in VVF than in the baseline
case (CVF) are observed. These results confirm the trends
previously reported by Talbot et al. (2013), along with the
value of 1.2 for the RMSu1/RMSu2 ratio Talbot (2009).

It is interesting to note that, independently of the quan-
tity used for the comparison between the two flows, the
discrepancies are more and more enhanced with increasing
downstream locations. The birth of the turbulent fluctua-
tions most likely results from a combination of four factors:
i) Kelvin Helmoltz instabilities; ii) wake instabilities be-
hind the injector lip; iii) interface instabilities due to density

Figure 4. Mean axial velocity normalized with respect to
the injection velocity, for both CVF and VVF, at two axial
locations: 1D and 2D.

Figure 5. Radial RMS normalized with respect to the in-
jection velocity, for both CVF and VVF, at two axial loca-
tions: 1D and 2D.

Figure 6. Ratio RMSu1/RMSu2 for VVF and CVF, at two
axial locations: 1D and 2D.

gradients; iv) interface instabilities due to viscosity jumps.
Points i) and ii) are characteristic of jet flows, constant-
viscosity or not, thus, they can’t be responsible for such
different behaviors. As far as the density effects are con-
cerned, the studied configuration is those of a ’heavy jet’
(heavy fluid injected in a lighter one). Yet, accordind to
(Amielh et al., 1996), in this situation if the density effects
prevailed they would inhibit the mixing and not enhance it
as observed here. A phenomenological scenario to explain
the mixing enhancement, based on point iv), is as follows.
Viscous host fluid blobs are brought (via the three types of
instabilities) into the jet fluid. These viscous blobs repre-
sent obstacles which slow down the initial jet velocity and
lead to the production of radial velocity fluctuations behind
these obstacles (wake instabilities). The rapid birth of radial
velocity fluctuations accelerates the trend towards isotropy
and self-similarity.

We conclude this section with the statement that clear
experimental evidence has been brought to claim that vis-
cosity stratification has an important influence on turbu-
lence, for viscosity ratios as low as 3.5. In the following,
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we develop the analytical tool aimed at deepening the in-
vestigation of VVF.

ANALYTICAL DEVELOPMENT
A deeper insight into the birth, increase and dissipation

of turbulent fluctuations is provided by the one-point ki-
netic energy budget in variable-viscosity flows, Talbot et al.
(2013). With the decomposition Ui =U i +ui, the one-point
kinetic energy budget is as follows:

∂
∂ t

(
u2

i

)

︸ ︷︷ ︸
NS

+U j
∂

∂x j

(
u2

i

)

︸ ︷︷ ︸
A

+u j
∂

∂x j

(
u2

i
)

︸ ︷︷ ︸
B

+2uiu j
∂U i

∂x j︸ ︷︷ ︸
C
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∂

∂xi
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︸ ︷︷ ︸
D

+2ui ·ν
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∂x2
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+ν
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∂x2
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E

+2
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[
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∂x j
+

∂U j

∂xi

]

︸ ︷︷ ︸
PV G

+
∂ν
∂x j

∂u2
i

∂x j
+2

∂ν
∂x j

∂ (uiu j)

∂xi︸ ︷︷ ︸
DV G

−2ν
(

∂ui

∂x j

)2

︸ ︷︷ ︸
εVV

. (1)

Summation convention applies to repeated indices and
overbar signifies time averaging. Term NS reflects the non-
stationarity of the kinetic energy. Terms A, B, C, D and E
represent respectively the kinetic energy advection, turbu-
lent diffusion, production, pressure diffusion (the kinematic
pressure is considered) and the molecular effects. An anal-
ysis of this equation has been performed for the particular
case of a temporal mixing layer involving two streams with
different viscosities, e.g. Taguelmimt et al. (2014). Terms
PV G (’VG’ stands for ’Viscosity Gradients’) involve mean
velocity gradients multiplied by correlations between vis-
cosity gradients and velocity fluctuations. These are pos-
itive and contribute to the increase of the kinetic energy.
Therefore, they are called ’Production due to Viscosity Gra-
dients’ (PV G). Terms DV G reflect an overall destruction of
fluctuations (although, the second term may become locally
positive, Taguelmimt et al. (2014)). The last term repre-
sents the homogeneous form of εVV . This budget involves
a complete expression of the mean energy dissipation rate,
εVV

total ≡ εVV +DV G and is therefore enhanced with respect
to classical flows at uniform viscosity. This budget allows
a complete expression of the mean energy dissipation rate
εVV

total to be written, viz. Talbot et al. (2013), Campbell &

Turner (1985), εVV
total ≈ νh

νl
ν
(

∂u′i
∂x j

)2
.

The last part of the paper is dedicated to the scale-by-
scale energy budget equation. Instantaneous Navier-Stokes
equation, free from external forces, is first written for the
total velocity, viz. ∂ui

∂ t +u j
∂ui
∂x j

=− 1
ρ

∂ p
∂xi

+ ∂
∂x j

[ν τi j], with

τi j =
∂ui
∂x j

+
∂u j
∂xi

. Two points of the flow, ~x+ and ~x−, sep-

arated by the increment ~r such as ~x+ = ~x− +~r are con-
didered. Following the methodology suggested in Danaila

et al. (2004), Navier-Stokes equation for the total velocity
with variable viscosity is written at these two points They
are subtracted one from the other and further multiplied by
twice the velocity increment ∆ui and averaged. All terms
are similar to those present in the classical scale-by-scale
energy budget equations, except the terms involving the vis-
cosity which must include several contributions, similarly
to the one-point energy budget. After numerous manipula-
tions which are not detailed here, the scale-by-scale energy
budget equation in VVF is finally given by

U j
∂

∂x j
(∆ui)2 +∂x j

u+j +u−j
2 (∆ui)2 +∂r j ∆u j(∆ui)2 +∆ui∆u j

∂U i
∂x j

=

−2
ρ ∂xi ∆p∆ui +

∂ 2

∂ r2
j
(ν++ν−)(∆ui)2 + 1

2
ν++ν−

2
∂ 2(∆ui)2

∂x2
j

−2ε+VV −2ε−VV +Viscosity terms. (2)

All terms are classical, except those formally denoted
as ’Viscosity terms’ which involve viscosity fluctuations
and viscosity gradients at any scale~r, Eq. (3).

Viscosity terms =

− ∂ 2(ν++ν−)
∂ r2

j
(∆ui)2− ∂ (ν++ν−)

∂ r j

∂ (∆ui)2

∂ r j
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∂ r j

∂
∂X j
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+ ∂
∂X j

( ν++ν−
2 )
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∂

∂X j
(
(∆ui)2

2 )+ ∂
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(∆ui∆u j)
]

+ ∂
∂X j

(∆ν)
[

∂
∂ r j

(
(∆ui)2

2 )+ ∂
∂ ri

(∆ui∆u j)
]

+ ∂
∂ r j

(∆ν)
[

∂
∂X j

(
(∆ui)2

2 )+ ∂
∂Xi

(∆ui∆u j)
]

+2 ∂
∂ r j

( ν++ν−
2 )

[
∂

∂X j
(
(∆ui)2

2 )+ ∂
∂Xi

(∆ui∆u j)
]
.

(3)

This expression is consistent with the one-point kinetic
energy budget, Eq. (1), in the limit of large scales. Thus, the
balance between terms in VVF scale-by-scale energy bud-
get equation is different from that in CVF. It will be argued
that the importance of the advection term decreases in the
near field, whereas the viscous terms are more and more
important for increasing downstream locations.

It is worth noting that the ”Viscosity terms”, although
they depend on viscosity, are present at large scales thus
correcting the belief that the viscosity is reduced to a small-
scale quantity. Whereas viscosity itself destroys kinetic en-
ergy, the viscosity gradients play a clear role of production
of kinetic energy. Two flow regions may be distinguished:
–the near field, where mixing between the two fluids occurs.
In this region, it is reasonable to expect that the majority of
terms in Eq. (2) is non-negligible.
–the far field, for which the central region of the flow is
already mixed, although the viscosity of the flow continu-
ously varies with the downstream location, say x1. There-
fore, we consider in this region that ν+ ≈ ν− over scales
~r ranging between the Kolmogorov and the integral scales
(the latter being considered much smaller than the scale
over which the decay takes place).
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SIMILARITY AT ANY SCALE IN A VARIABLE
VISCOSITY FLOW

In this last section, we addresses the question of the
equilibrium self-similarity, as introduced by George & Gib-
son (1992) in the spectral space and Antonia et al. (2003) in
real space. It is of interest to inquire into the similarity of
all scales on the axis of a round jet, since Reλ (the Reynolds
numbed based on the Taylor’s microscale) is expected to re-
main constant along the axis in the jet far field Tennekes &
Lumley (1975).

Assuming

• local homogeneity and isotropy
• flow stationarity
• inhomogeneity along the jet axis (x1) only
• lateral diffusion (no shear in the jet central region)
• U1 and ν only depend on x1
• slight variations of εVV over scales smaller than the

integral scale ie ε−VV = ε+VV ,

Eq. (2) in the central region of a round jet issuing into a
more viscous fluid yields

U1
∂

∂x1
(∆ui)2 +∂r j ∆u j(∆ui)2 +2 dU1

dx1

(
(∆u1)

2− (∆u2)
2)

+ ∂
∂x2

(u2 +u+2 )(∆ui)2

=

2ν ∂ 2

∂ r2
j
(∆ui)2 + dν

dx1

∂
∂x1

(∆ui)
2−2εVV . (4)

In the central region of the round jet all terms depend
on r only, thus particular expressions for operators diver-
gence and Laplacian can be chosen, namely in spherical co-
ordinates. By following the classical approach Monin &
Yaglom (1975), Danaila et al. (2004), we finally obtain

−∆u1(∆ui)2 +2ν d
dr (∆ui)2

−
(

U1 +
dν
dx1

)
1
r2

∫ r
0 s2 ∂ (∆ui)2

∂x1
ds

−2 dU1
dx1

1
r2

∫ r
0 s2

(
(∆u1)2− (∆u2)2

)
ds

− 1
r2

∫ r
0 s2

[
∂

∂x2

(
u2 +u+2

)
(∆ui)2

]
ds = 4

3 εVV r, (5)

where s is a dummy variable. Whether or not the turbulent
diffusion is present along the axis of a round jet, is still con-
troversial, even for constant viscosity flows, Hussein et al.
(1994).

In order to examine the conditions under which Eq. (5)
satisfies similarity, we need to assume functional forms for
the terms in this equation. Following Antonia et al. (2003)
and Burattini et al. (2005), we take

(∆ui)2 = Q(x1) f (ξ )

(∆u1)2 = M(x1)e(ξ )

(∆u2)2 = R(x1)h(ξ )

−∆u1(∆ui)2 = T (x1)g(ξ ), (6)

where ξ = r/L and L is a characteristic length scale, to
be determined, A possible dependence on the initial con-
ditions is not explicitly considered here. The other terms
may be written in a similar fashion, but we focus here only

on some of them. Q(x1) and T (x1) are scales that charac-
terize the second-order and the third-order structure func-
tions, respectively. The lower-case functions represent the
shape of the involved structure functions. The separation
between functions of x1 and ξ allows solutions of the trans-
port equation for which a relative balance among all of the
terms is maintained as the flow progresses downstream to
be obtained. Upon substituting Eqs. (6) into Eq. (5), we
obtain (after differentiating and rearranging)

T (x1)g(ξ )+2νQ(x1)
1
L f ′(ξ )

−U1Q′(x1)
r2 L 3Γ1− dν

dx1

Q′(x1)
r2 L 3Γ1

+
U1Q(x1)

r2
dL
dx1

L 2Γ2

+ dν
dx1

Q(x1)
r2

dL
dx1

L 2Γ2−2 dU1
dx1

M(x1)
r2 L 3Γ3

+2 dU1
dx1

R(x1)
r2 L 3Γ4 =

4
3 〈ε〉homr. (7)

where Γ1 =
∫ r/L

0
s2

L 2 f (ξ )d
( s

L

)
;Γ2 =

∫ r/L
0

s3

L 3 f ′(ξ )d
( s

L

)
;Γ3 =

∫ r/L
0

s2

L 2 e(ξ )d
( s

L

)
;Γ4 =

∫ r/L
0

s2

L 2 h(ξ )d
( s

L

)
. Note that the following relation has

been used ∂ξ
∂x1

= −rL −2 dL
dx1

. After some rearranging and
requiring that, for equilibrium similarity, all terms function
of x1 must evolve in the streamwise direction in the same
way, we obtain

T (x1)L

ν(x1)Q(x1)
= const. (8)

U1Q′(x1)L
2

ν(x1)Q(x1)
= const. (9)

dν(x1)

dx1

Q′L 2

νQ(x1)
= const. (10)

U1

ν(x1)

dL

dx1
L = const. (11)

εVV

ν(x1)

L 2

Q(x1)
= const. (12)

The other terms may be written similarly, but the informa-
tion they provide is redundant with respect to what follows.
Supposing that a similarity variable for Q(x1) is the total
kinetic energy, i.e. Q(x1) ∼ u2

i , then from Eq.(12), a char-
acteristic scale can be identified with the Taylor microscale

λ ≡
√

Qν
εVV

, therefore L ≡ λ . We consider the following

power laws for U1 as well as for u′, the root mean square of
the total kinetic energy u2

i ,

U1 ∼ x−nU
1 , u′ ∼ x−nu

1 , ν ∼ xnν
1 , (13)
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with nU > 0, nu > 0, nν > 0. Injecting (13) into Eq. (11), it
can be inferred that

L ∼ x
nU +nν+1

2
1 . (14)

Combining Eq.8 to Eq.13 and assuming that
T (x1)/Q(x1) ∼ u′, we deduce the following relations
between the power law exposants

nU = nu, (15)

and

nν = 1−nU . (16)

Equation (15) simply signifies that the decaying laws for
the streamwise mean velocity and the associated fluctuation
root mean square are similar. This result fully supports the
hypothesis of self-similarity.

This very simple relation reflects the fact that ReL (or,
Reλ as the characteristic scale has been identified with the
Taylor microscale), is constant along the axis of the jet.
Hereafter, (at least) three scenarii are possible. The first one
is that when as in classical round jets, both the streamwise
velocity and the fluctuations root mean squared u′ decay as
x−1

1 , as shown by Talbot et al. (2009). These values are
fully consistent with the conservation of the jet momentum,
Tennekes & Lumley (1975). Then, Eq. (16) ineluctably
leads to nν = 0, which is to say that the jet evolves and en-
trains ambient fluid with the same viscosity. Therefore, our
analysis is fully compatible with the constant-viscosity jets
for which Reλ is conserved. The second possibility is that
corresponding to real jets evolving in a variable-viscosity
host fluid, for which nν 6= 0. Therefore, if Eq. (16) holds,
then nU 6= 1 and this signifies that the classical conserva-
tion of the jet momentum is not respected, Hussain & Zedan
(1978). Then, Reλ might be conserved along the axis of the
variable-viscosity jet, but then the jet momentum is not con-
served. The last possibility is for nν 6= 0, Eq. (16) does not
hold, so Reλ is not conserved. All these possibilities are
complex, and deserve further experimental and numerical
investigations.

CONCLUSION
With respect to the classical constant-viscosity jet, the

variable-viscosity jet of a fluid issuing into a more viscous
ambient, exhibits:
–in the very near field, enhanced entrainment, important tur-
bulent fluctuations.
–in the far field, turbulent fluctuations are destroyed by
the increased ambient viscosity and Rλ might not remain
constant. The general message of this contribution is that
whereas the viscosity itself indeed acts at the level of small-
est scales, flows with viscosity variations at a large scale
(such as jets issuing in different environment) are charac-
terised by effects of viscosity variations at any scale, in-
cluding the largest. A simple visualisation of the scalar dis-
persion allows us to observe a significant disparity between

VVF and CVF behaviours, leading us to say that the viscos-
ity affects the topology and the dynamics of the whole flow
at all scales.
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