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ABSTRACT
Direct numerical simulations of turbulent duct flows

with width-to-height ratios 1, 3, 5, 7 and 10, at a friction
Reynolds number Reτ,c' 180, are carried out with the spec-
tral element code Nek5000. The aim of these simulations is
to gain insight into the kinematics and dynamics of Prandtl’s
secondary flow of second kind, and its impact on the flow
physics of wall-bounded turbulence. The secondary flow is
characterized in terms of the cross-plane mean kinetic en-
ergy K = (V 2 +W 2)/2, and its variation in the spanwise di-
rection of the flow. Our results show that averaging times of
at least 3,000 time units are required to reach a converged
state of the secondary flow, which extends up to z∗ ' 5h
from the side walls. We also show that if the duct is not
wide enough to accommodate the whole extent of the sec-
ondary flow, then its structure is modified by means of a
different spanwise distribution of energy. The kinetic en-
ergy of the secondary flow for z∗ > 5h in aspect ratios 7
and 10 exhibits a decaying level of energy, and the rate
of decay is approximately 〈Kyz〉 ∼ T−1

A . This is the same
rate of decay observed in a spanwise-periodic simulation,
which suggests that at the core, 〈K〉yz behaves as a random
variable with zero mean, with rate of decay consistent with
central limit theorem theory. Non-stationary effects of the
secondary flow may persist into the core for all the aspect
ratios we have run so far, and may interact with the dynam-
ics of the nominally homogeneous flow that would exist in
a channel. The non-stationary effects will be presented and
further discussed in the Symposium. Note that these con-
clusions are limited to the low Reynolds number range un-
der consideration, and additional data will be necessary to
assess Reynolds number effects.

INTRODUCTION
Turbulent duct flows of different aspect ratios AR (de-

fined as the duct width W divided by its total height H) are
of great importance for a number of technological applica-
tions. The most remarkable characteristic of ducts is the
formation of the so-called Prandtl’s secondary flow of sec-
ond kind at the duct corners, which arises from the Reynolds
stress difference v2−w2 and the deviatoric Reynolds shear

stress vw. Due to the Reynolds-stress-induced nature of
this kind of secondary flow, currently available Reynolds
Averaged Navier–Stokes (RANS) models widely used in
industry in general fail to predict its effect on the flow.
The studies by Gavrilakis (1992), Huser & Biringen (1993),
Uhlmann et al. (2007) and Pinelli et al. (2010) have shown
the potential of using numerical simulations to study tur-
bulent duct flows. They performed direct numerical sim-
ulations (DNSs) of square ducts at low Reynolds numbers
below Reτ = 300. The velocity and length scales are the
friction velocity uτ =

√
τw/ρ (where τw is the mean shear

stress at the wall and ρ is the fluid density) and the duct half-
height h respectively, whereas Reτ is the friction Reynolds
number. On the other hand, the impact of the secondary
flow on the mean velocity profile and the turbulent fluctua-
tions for increasing aspect ratios has not been characterized
in detail before, and this is the aim of the present study.

NUMERICAL SIMULATIONS
Turbulent duct flows with aspect ratios 1, 3, 5, 7 and

10 at Reτ,c ' 180 (where uτ,c is the friction velocity at the
duct centerplane in the spanwise direction) are simulated
by means of DNS. The database was initially presented by
Vinuesa et al. (2014b, 2015c). The simulations were per-
formed with the code Nek5000, developed by Fischer et al.
(2008) and based on the spectral element method (SEM)
by Patera (1984). In the SEM the computational domain is
decomposed into elements, and the solution is expanded in
terms of Legendre polynomials of order N inside those ele-
ments. The location of the nodes within elements is fixed,
and follows the Guass–Lobatto–Legendre (GLL) distribu-
tion, whereas there are no restrictions regarding the posi-
tion of the elements in the domain. This means that this
method allows the flexibility to compute complex geome-
tries, while still preserving the characteristics of a high-
order spectral method. In the present study we consid-
ered the PN −PN−2 formulation with N = 11. Therefore,
the velocity field was expanded in terms of Legendre poly-
nomials of order 11, and order 9 was considered for the
pressure field. The nonlinear terms are treated explicitly
by third-order extrapolation (EXT3), whereas the viscous
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Figure 1. Instantaneous streamwise velocity from the as-
pect ratio 10 case at 2,000 convective time units from the
beginning of the simulation. Green and orange represent
minimum and maximum velocities in the field respectively.
Flow is from lower left to upper right, and walls have been
removed for clarity.

terms are treated implicitly by a third-order backward dif-
ferentiation scheme (BDF3). Nek5000 is written in Fortran
77 and C, and parallelized with MPI. Parallel I/O is sup-
ported both through MPI I/O and a custom parallel I/O im-
plementation. Over 190 users worldwide employ Nek5000
for their research and it has been acknowledged in more
than 200 journal articles. Besides the duct cases, we have
used Nek5000 to compute the flow around a wing section
represented by a NACA4412 profile (Vinuesa et al., 2015a)
and around a wall-mounted square cylinder (Vinuesa et al.,
2015b). During the runs we compute a total of 71 statistical
fields where streamwise-homogeneity is exploited, which
allow us to calculate complete turbulence budgets. For flow
visualizations we use the open source massively parallel vi-
sualization tool VisIt (https://visit.llnl.gov/).

With respect to the flow setup, periodicity is assumed
in the streamwise direction x in all the cases, and no-slip
conditions are imposed at the walls along the vertical (y)
and spanwise (z) directions. All the ducts have a stream-
wise length of Lx = 25h, and the same Reynolds number
Reb,c ' 2,800 is maintained in the centerplane for all the
aspect ratio cases (Reb,c is based on centerplane bulk veloc-
ity and h). All the simulations are started from a laminar
solution, and transition to turbulence is tripped by means
of a localized volume force acting in y. Its parameters are
designed to create strong, instationary streaks that lead to
rapid turbulent breakdown as described by Schlatter & Örlü
(2012). Figure 1 shows an instantaneous streamwise veloc-
ity field obtained from the duct with AR = 10. Near-wall
streaks can be easily identified in this figure, with the well
documented spacing in the spanwise direction ∆z+ ' 100.
The resolution is therefore appropriate to capture near-wall
dynamics in the flow, and the use of a high-order method
improves the representation of the velocity field. It is in-
teresting to observe how near-wall streaks are also formed
on the side walls, also with an approximate spacing of
∆y+ ' 100, and how at the corner the effect of the two
walls inhibits the formation of such structures. Instead, the
flow field in Figure 1 shows how the bursting events from
horizontal and vertical walls interact at the corner. These
interactions were reported by Huser & Biringen (1993) to
result in a redistribution of energy from v2 to w2 in square
ducts, which eventually leads to the formation of the mean
secondary flow.

Regarding the role of coherent structures in the ducts
from a dynamical point of view, we considered several
widely used methods for coherent structure identification,
including λ2 (Jeong & Hussain, 1995), Q (Hunt et al.,
1998), λci (Zhou & Kendali, 1999) and ∆ (Chong et al.,
1990), together with a less widely used approach by Kida
& Miura (1998), from a number of instantaneous realiza-
tions of the flow (Nagib et al., 2014). The main difference
between the latter and the other methods is the fact that it
is based on explicitly seeking pressure minima, and is de-
fined on two-dimensional planes of the fields (unlike the
other techniques which are defined in three-dimensional re-
alizations). All the methods produce very similar results,
and identify the occurrence of buffer layer vortices along
the horizontal and side walls, exhibiting the spacing be-
tween streaks of ' 100+ observed in Figure 1. Coherent
vortex analyses show two interesting results: the first one
is that, unlike in the spanwise periodic channel, in the duct
the number of streaks present in the flow is limited by the
width scaled in wall units. The second conclusion is that
no coherent structures are detected close to the corners (as
also observed in Figure 1), which could be explained by the
fact that the two walls inhibit the regular near-wall cycle of
turbulence and therefore condition the presence of coherent
vortices in this region. In addition to this, our results in-
dicate that coherent vortices statistically exhibit essentially
the same length in the streamwise direction in duct flows of
aspect ratios from 1 to 10 and in spanwise-periodic chan-
nel flows. This means that from a dynamical perspective,
rectangular ducts and channels exhibit similar features, al-
though due to the different boundary conditions at the side
walls the kinematic behavior of the flows differ, as will be
discussed next.

CHARACTERIZATION OF THE SECONDARY
FLOW

The secondary flow in rectangular ducts is evaluated
by analyzing the two-dimensional fields obtained after av-
eraging over the two statistically homogeneous dimensions
of the flow: streamwise and time. It is in these averaged
fields where the secondary flow is observed, as shown in
Figure 2 for the aspect ratio 1 and 3 cases. As shown in
this figure, the secondary flow lies on the yz plane, and con-
sists of eight counter-rotating vortices located close to the
side walls, which convect momentum towards the corners.
Whereas in the square duct case all the vortices exhibit the
same size and momentum is convected towards the corner
bisector, Figure 2 shows that in rectangular ducts the vortex
located on the horizontal wall is wider in the spanwise di-
rection, and the one on the side wall is slightly smaller than
the corresponding one in the square case. It is important to
note that these vortices are a mean flow feature, and there-
fore are only observed in time-averaged fields, not in instan-
taneous representations of the flow. In other words, they do
not play an obvious role in the instantaneous dynamics of
the duct, and it is the kinematic response of the flow, with
the need to satisfy the no-slip conditions at the side walls,
what produces them. In spanwise-periodic channel flows
these boundary conditions at the side walls do not have to
be satisfied, and therefore the mean velocity components V
and W eventually decay to zero everywhere when statistical
convergence is reached.

In the present study we characterize the secondary flow
in terms of its kinetic energy K = (V 2 +W 2)/2 at various

2



y/
h

z∗/h

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

Figure 2. Streamlines showing the secondary flow corre-
sponding to the (bue) square and (red) aspect ratio 3 duct
cases (note that z∗ is measured from the corner to allow eas-
ier comparison between the two cases.). Flow field obtained
after streamwise- and time-averaging.

Figure 3. Kinetic energy of the secondary flow K for the
AR = 3 case, and windows used to calculate 〈K〉yz.

locations in the spanwise direction z. To do that, we di-
vide the rectangular ducts into smaller areas of width h and
height 2h. Consequently, the square duct would be divided
into two regions, and the AR = 10 case into 20. The sym-
metry of the flow with respect to the z/h = 0 plane can be
exploited to improve the statistics, which leads to a total of
10 areas in the AR = 10 case. This is illustrated for the
AR = 3 and 10 cases in Figures 3 and 4, where contour
maps of K are also shown. Note that K shows the secondary
flow distribution with the counter-rotating vortices, and the
spanwise extent of the cross-flow. It is interesting to observe
that in the AR = 3 case the secondary flow extends up to a
spanwise length of z∗ ' 3h (where z∗ is measured starting
from the corner), whereas the wider AR = 10 duct allows
the cross-flow to develop up to z∗ ' 5h. With respect to the
windows, as a convention we will denote the one closest to
the corner as #1, and increase the number up to the value of
the one closer to the core of the duct. As shown in Figure
4, in the aspect ratio 10 case the window from z =−10h to
−9h would be #1, and the one from z = −h to 0 would be
#10. The idea is to track the evolution in time of the sec-
ondary flow kinetic energy K averaged over these windows,
to assess both their respective rates of convergence and their
converged values. We will use the symbol 〈·〉 to denote the
spatial average of a certain quantity, whereas capital letters
denote the mean in time (so V would be the time-average
of the instantaneous signal ṽ). Here we will consider the
value of K averaged in the vertical direction, and also in the
spanwise direction in a particular window.

The results from the previous procedure applied to the
first window, denoted by 〈K〉yz1, are shown in Figure 5.
The value of the secondary flow kinetic energy averaged
over the first window (which is the only one present in the
square duct) is represented as a function of the averaging
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Figure 5. Kinetic energy of the secondary flow averaged
over the first window 〈Kyz1〉 as a function of averaging time,
for all the aspect ratios.

time TAUb/h (note that the reported averaging periods ex-
clude the initial transients). All the aspect ratio cases reach
a fully converged state after approximately 3,000 convec-
tive time units, and the square duct shows the lowest level
of energy: 〈Kyz1〉 ' 3×10−5. Aspect ratios 3 and 5 exhibit
values of around 4.5×10−5, whereas the highest aspect ra-
tios 7 and 10 have a slightly lower 〈Kyz1〉 value of 4×10−5.
As we will discuss below, these differences have to do with
the spanwise development of the secondary flow: the square
duct does not allow the cross-flow to evolve and reach the
form it would exhibit in a sufficiently wider duct. With re-
spect to aspect ratios 3 and 5, they show a pattern closer
to the wider 7 and 10 cases, but constrained on a narrower
space, which leads to higher concentration of energy close
to the corner.

Figure 6 shows the kinetic energy of the secondary flow
averaged over the second and third windows (excluding the
square duct), as a function of averaging time. The second
window from all the cases exhibit a very similar converged
level of energy (after averaging for at least 3,000 time units)
of 〈Kyz2〉 ' 2× 10−5, which suggests that beyond a cer-
tain width the secondary flow, initiated at the corner, shares
common features in all the ducts. Comparison of the second
windows from aspect ratios 3 and 10 in Figures 3 and 4 sup-
ports this observation. Interestingly, the third window from
aspect ratios 5, 7 and 10 show a very similar level of energy
〈Kyz3〉 ' 5×10−6, whereas the energy corresponding to the
AR = 3 case is lower: 2.5× 10−6. If we again compare
the third windows from Figures 3 and 4 it becomes obvious
that the secondary flow from the aspect ratio 10 case is still
developing in z∗, and since this is the last window of the
AR = 3 case the cross-flow cannot evolve further, produc-
ing a lower level of energy.

The core of the duct is characterized for the aspect
ratios 7 and 10 in Figure 7. In this figure we show the
values of 〈Kyz〉 integrated over windows #6 and #7 in the
AR = 7 case, and windows #6, #7 and #10 in the AR = 10
duct, as a function of averaging time. We also show the re-
sults of a channel flow simulation (where spanwise period-
icity was imposed), performed with the Fourier–Chebyshev
spectral code SIMSON (Chevalier et al., 2007), in a com-
putational domain with same streamwise length as the duct
cases (Lx = 25h) and with a ratio between spanwise and
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Figure 4. Kinetic energy of the secondary flow K for the AR = 10 case, and windows used to calculate 〈K〉yz.
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Figure 6. Kinetic energy of the secondary flow averaged
over the second and third windows as a function of averag-
ing time, for aspect ratios 3, 5, 7 and 10.

wall-normal lengths Lz/Ly = 5. For the channel results we
considered a single window spanning the whole width of the
periodic domain, although the same trend is obtained by as-
suming windows of different sizes. Note that these windows
were chosen due to the fact that, as observed in Figure 4, the
long-time average of the secondary flow exhibits a spanwise
length of about z∗ ' 5h, and we are interested in comparing
the energy of the vortices at the core of the duct and the
ones in the channel. Interestingly, the value of 〈Kyz〉 decays
as the averaging time increases in all the windows and in
the channel, and both flows exhibit the same rate of decay
〈Kyz〉 ∼ T−1

A . This suggests that, at the core, the kinetic
energy of the secondary flow is in fact a random variable
with zero mean. Thus, increasing the averaging time (or the
number of samples in statistics terms) leads to progressively
lower values. This also implies that the rate of convergence
of the cross-plane velocities V and W would be ∼ T−1/2

A .
This is consistent with theory based on central limit theo-
rem, and our results indicate that this value is independent
of AR. Besides, similar values of K are obtained for compa-
rable averaging times. Consequently, the long-time average
of the kinematics found in a spanwise-periodic channel and
at the core of a wide enough duct are similar, and Figure 7
is a manifestation of sufficiently converged statistics.

The fourth and fifth windows are analyzed for aspect
ratios 5, 7 and 10 in Figure 8. It is interesting to note that
although the levels of energy from the various cases do not
decay at the rate 〈Kyz〉∼ T−1

A , it is not clear whether the data
would converge to a nonzero value or not. In any case, the
behavior in this region is different from the one observed
at the core, where the rate of decay is consistent with the
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Figure 7. Kinetic energy of the secondary flow averaged
over windows #6 and #7 in the AR = 7 case, and over win-
dows #6, #7 and #10 in the AR = 10 configuration. This
quantity is shown as a function of averaging time. The same
variable is shown averaged over the cross-sectional area in a
spanwise-periodic channel, together with the observed rate
of decay 〈Kyz〉 ∼ T−1

A .

one exhibited by a spanwise-periodic channel, and there-
fore it can be stated that in windows #4 and #5 the flow
does not behave as it does in the channel. The fourth win-
dow exhibits the same trend in AR = 7 and 10, with higher
energy level than the corresponding window in the AR = 5
duct. This is same behavior (with lower energy levels) is
observed in window #5, which further confirms the similar-
ities of ducts with AR ≥ 7, and the constrained secondary
flow in narrower ducts.

After assessing the levels of energy associated with the
secondary flow at localized regions in the duct, we evaluate
the spanwise variation of the kinetic energy integrated in the
wall-normal direction 〈Ky〉. Figure 9 shows this quantity for
all the ducts under consideration in this study, as a function
of the spanwise coordinate z∗, which is measured from the
corner. This figure shows that the secondary flow is stronger
close to the corner, and becomes gradually attenuated as the
core of the duct is approached. It is also interesting to note
that although all the aspect ratios show a similar structure,
with two local maxima and one local minimum in between,
their actual values are strongly influenced by the constrain-
ing effect of the aspect ratio. Thus, AR determines the struc-
ture of the secondary flow, where for instance it is clear that
the square duct exhibits a higher concentration of energy
close to the corner and has a steeper decay of kinetic energy
as the centerplane is approached. This is also consistent
with Figure 5, where we show that the integrated value of K
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Figure 8. Kinetic energy of the secondary flow averaged
over the fourth and fifth windows as a function of averaging
time, for aspect ratios 5, 7 and 10. Rate of decay 〈Kyz〉 ∼
T−1

A shown for comparison purposes.

over that first window is lower in the square duct, and pro-
vides additional support to the claim that the duct develops
similar features in all the aspect ratios if the width is large
enough. The significantly larger maximum of 〈Ky〉 close to
the corner in the square duct (between 30% and 44% larger
than the other cases) is also remarkable. It is also interesting
to observe that the aspect ratio 7 and 10 cases exhibit a sim-
ilar peak value of 〈Ky〉 close to the corner, whereas AR = 3
and 5 show intermediate values, highlighting the develop-
ing nature of the secondary flow with AR. The ducts with
aspect ratio 3 and 5 also show larger peak values at distances
z∗ ' 0.4h from the corner than the cases with AR = 7 and
10. This again is explained by the fact that the secondary
flow extends up to z∗ ' 5h from the corner, and if the duct
is not wide enough to accommodate the whole extent of the
secondary flow, then its structure is modified by means of a
different spanwise distribution of energy.

The notion that the secondary flow is stronger close to
the corner and becomes gradually attenuated as the core of
the duct is approached is also observed in Figure 10, where
〈K〉y is shown as a function of z∗ for the aspect ratio 7 and
10 cases, over the whole span 0 ≤ z∗/h ≤ 10. Here it also
becomes clear that the corner effects are relevant up to the
fifth window, and beyond this point they basically become
zero when long averaging times are considered. Interest-
ingly, the side-wall boundary layer thickness δz (evaluated
at the plane y = 0 as the point where dU+/dz+ ' 0) rises
from h to 3h and to 5h for the lower aspect ratios, then
shows the same value δz ' 6.5h in both AR = 7 and 10
cases. This also suggests that the corner effects start to
stabilize at aspect ratio 7. It is also important to highlight
that the kinetic energy of the mean flow integrated over the
whole width 〈K〉yz is roughly constant for all the aspect ratio
cases and equal to ' 6.5×10−5 (except for the square duct
case, which has a value of ' 3×10−5 as discussed above).
This implies that it is possible to establish a structure for the
secondary flow as a function of aspect ratio, and at least for
the range of aspect ratios under consideration it is possible
to evaluate the contributions from each region to the cross-
flow. In order to further assess the small differences in 〈K〉y
between aspect ratios 7 and 10, we are currently performing
a DNS on a duct with AR = 14.4. This case is also designed
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Figure 9. Spanwise variation of the wall-normal inte-
grated kinetic energy of the secondary flow 〈Ky〉, for all the
duct cases under consideration. Results obtained from the
streamwise-averaged fields, with averaging times of at least
3,000 time units. Note that z∗ is measured from the corner
to allow easier comparison between the various cases.
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Figure 10. Spanwise variation of the wall-normal inte-
grated kinetic energy of the secondary flow 〈Ky〉, for as-
pect ratios 7 and 10. Results obtained from the streamwise-
averaged fields, with averaging times of at least 3,000 time
units. Note that z∗ is measured from the corner to allow
easier comparison between the various cases, and the loca-
tion z∗ = 5h is shown to illustrate the spanwise extent of the
secondary flow.

to match one of the cases in the measurements by Vinuesa
et al. (2014a).

SUMMARY AND CONCLUSIONS
Direct numerical simulations of turbulent duct flows

with width-to-height ratios 1, 3, 5, 7 and 10, at a friction
Reynolds number Reτ,c ' 180, were carried out with the
spectral element code Nek5000. The aim of these simula-
tions is to gain insight into the kinematics and dynamics of
Prandtls secondary flow of second kind, and its impact on
the flow physics of wall-bounded turbulence. The computa-
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tional setup was adequate to capture the smallest turbulent
structures, as well as the complicated phenomena arising at
the duct corners. Although the corners inhibit the formation
of typical wall-turbulence streaks, the interaction of burst-
ing mechanisms from horizontal and vertical walls lead to
the formation of the secondary flow through redistribution
of turbulent kinetic energy from the v2 component to the
w2.

The secondary flow in the various ducts is charac-
terized in terms of the cross-plane mean kinetic energy
K = (V 2 +W 2)/2, and its variation in the spanwise direc-
tion of the flow. Our results show that averaging times of
at least 3,000 time units are required to reach a converged
state of the secondary flow, which extends up to z∗ ' 5h
from the side walls. We also show that if the duct is not
wide enough to accommodate the whole extent of the sec-
ondary flow, then its structure is modified by means of a
different spanwise distribution of energy. Dividing the flow
into windows of width h reveals a number of interesting
conclusions. First, all the aspect ratios exhibit the simi-
lar levels of averaged energy close to the corner (window
#1), 〈K〉yz1 ' 4.5× 10−5 and 4× 10−5 for aspect ratios 3
and 5, and 7 and 10 respectively; the square duct shows a
lower level ' 3×10−5, and its secondary flow differs from
the one observed in the wider ducts. The second window
shows the same level of energy in all aspect ratios from 3
to 10, 〈K〉yz2 ' 2×10−5, which is roughly ten times larger
than the energy found in the fourth window for the widest
cases (7 and 10). Interestingly, all the windows beyond #5
exhibit a decaying level of energy, and the rate of decay is
approximately 〈Kyz〉 ∼ T−1

A . This is the same rate of decay
observed in a spanwise-periodic simulation, which suggests
that beyond z∗ ' 5h, 〈K〉yz behaves as a random variable
with zero mean, with rate of decay consistent with central
limit theorem theory. With respect to windows #4 and #5,
the levels of energy from the various cases do not decay at
the rate 〈Kyz〉 ∼ T−1

A , and it is not clear whether the data
would converge to a nonzero value or not. In any case, it
can be stated that the flow in this region does not behave
as it does in the channel. On the other hand, the dynam-
ics of the turbulence and short-time averages of the vortical
flow have revealed differences in the core region between
the channel and ducts with aspect ratios up to 10 (Vinuesa
et al., 2015c). These non-stationary effects of the secondary
flow may persist into the core for all the aspect ratios we
have run so far, and may interact with the dynamics of the
nominally homogeneous flow that would exist in a channel.
The non-stationary effects will be presented and further dis-
cussed in the Symposium. This suggests that experimental
facilities intended to represent the canonical channel flow
and to compare the turbulence structures and dynamics and
vortical flow details may require aspect ratios larger than fa-
cilities with highest ratios used so far of 12 and may need
to be as large as 18, as in Vinuesa et al. (2014a). Note that
these conclusions are limited to the low Reynolds number
range under consideration, and additional data will be nec-
essary to assess Reynolds number effects.
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