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Introduction 
The game of golf, first played almost six hundred years ago 

in Scotland, is one of the most popular sports all around the 
world. Among the physics hiding behind the game, the most 
interesting one relating to fluid dynamics is the aerodynamics of 
the golf ball. Two important factors to explain the aerodynamics 
are the surface roughness created by dimples and ball’s 
self-rotation. The former is discussed in terms of the 
enhancement of the drag crisis, which drastically decreases the 
aerodynamics drag and stabilizes the flight path. On the other 
hand, the latter affects the flight distance of the ball through the 
additional lift force created by the Magnus effect. These two 
factors are supposed to interact with each other through the 
transition of surface boundary layer and sensitively affect the 
separation and reattachment points. While optimization of the 
dimple pattern of the golf ball is still one of the main design 
factors in its manufacturing process, its detailed physical 
mechanisms of how the dimple contribute to reduce the drag 
(Choi et al., 2006; Smith et al., 2010) and affect the Magnus 
effect (Muto et al., 2012) have not yet been fully understood. 
Accordingly the objective of this study is, by conducting the 
Large-Eddy Simulation of fully resolving the surface boundary 

layer, to investigate the effect of surface roughness on the drag 
crisis and the Magnus effect through the comparison of the 
smooth and dimpled rotating sphere at around critical Reynolds 
number. 

Target Geometries and Simulation Conditions 
Geometry details of the golf ball used in the present study as 

the roughness sphere model are shown in Fig.1. The 
dimensionless geometry parameter k/D quantitatively measures 
the roughness of a golf ball, where k is the dimple depth and D 
represents the diameter of the spheres, and is approximately 
0.5×10-2 for our golf ball model. Muto’s sphere model (Muto et 
al., 2012) is used as the corresponding smooth sphere in the 
present study. In order to properly reproduce the drag crisis, the 
Reynolds numbers with respect to the sphere diameter and 
approaching flow velocity are set to be 4.3 ×104, 7.5 ×104 and 1.1 
×105 respectively for the subcritical, critical and supercritical golf 

ball cases. The spin parameter Γ defined as the ratio of the ball’s 
surface rotating velocity (ωD/2 where ω is the angular velocity of 
rotation) and the approaching flow velocity is set to be equal to 
0.1, considering the real golf boll’s flight condition. 

June 30 - July 3, 2015 Melbourne, Australia

9
7D-4



Figure 1: Geometry of golf ball 

Numerical Methods and Mesh Generation 
The spatially filtered Navier-Stokes equations were 

discretized based on the vertex centered finite volume method for 
fully unstructured grids, considering the flexibility of the uniform 
grid resolution on the surface and precise reproduction of the 
dimple shape. The dynamic subgird-scale eddy viscosity model 
by Germano et al. (1991) was adopted. The second order central 
difference scheme was used for the spatial derivatives, while 5% 
of the first order upwind scheme was blended for the calculation 
of convection term to avoid unexpected numerical oscillation. 
For the rotating cases, in order to reproduce the self-rotation of 
the golf ball, entire flow filed was rotated without changing its 
coordinate fixed on the inertial frame of reference. This strategy 
satisfactorily solved the challenge to properly reproducing the 
change of boundary configuration with respect to the incoming 
flow direction while the golf ball is rotating. To impose a rotating 
motion on the flow field, arbitrary Lagrangean-Eulerian (ALE) 
method was adopted (Hirt et al., 1974). This method allowed 
instantaneously moving vertexes to the new positions determined 
according to the specific spinning conditions. 

The surface of the balls was reproduced by uniform triangle 
meshes and prism layers were allocated along the normal-wall 
direction starting from the surface mesh to resolve the boundary 
layer. The required grid resolution was estimated based on the 

laminar boundary-layer thickness δB on the surface estimated by 
Shlichting (1955) (Muto et al., 2012; Li et al., 2014). For the golf 
ball case at the highest Reynolds number considered in the 
present study, the near-wall resolution was finally determined to 

be approximately 1/34 δB for the thickness of the first prism layer 
on the surface and around 1/3 δB for the directions parallel to the 
solid surface (see Fig.2 in the case of golf ball). The total mesh 
number amounts to about 150 million. 

Figure 2: Numerical meshes around the surface of golf ball 

Results and Discussions 
Fig.3 plots the numerical results of drag coefficients for the 

present non-rotating golf ball cases and Muto’s non-rotating 
smooth sphere cases (Muto et al., 2012). The experimental data 
obtained in the previous literatures including both the stationary 
golf balls and smooth spheres (Wieselsberger, 1922; Achenbach, 
1972; Choi et al., 2006) are also shown in Fig.3 as references. As 
indicated in this figure, the drag crisis of the present golf ball 
model has been successfully reproduced in our simulations, such 
that the drag coefficient stays at about 0.49 at the subcritical 
Reynolds number (Re=4.3 ×104) and decreases sharply to around 
0.22 at the supercritical Reynolds number (Re=1.1 ×105), and our 
results show a good agreement with the experimental data 
obtained by Choi et al. (2006). It is also clearly shown in fig.3 
that the drag crisis occurs at a remarkably lower Reynolds 
number for the present golf ball compared with the smooth 
spheres, even though the discrepancy between the drag 
coefficients of the golf ball and the smooth spheres is limited at 
the subcritical Reynolds numbers. 

Figure 3: Drag coefficient in the stationary cases 



 
Figure 4: Surface pressure distributions in the stationary cases 

 
The statistics of the mean pressure distribution on the 

stationary golf ball surface are plotted in Fig.4, with both Muto’s 
numerical results (Muto et al., 2012) and Achenbach’s 
experimental data (Achenbach, 1972) for the non-rotating smooth 
spheres being included as references. The polar angle φ in the 
figures is measured from the front stagnation point. Specifically, 
the data for golf ball cases are obtained along the central joint 
line of the golf ball. Such path doesn’t go across any of the 
dimples on the surface. One can observe from fig.4 that the 
pressure distribution on the golf ball surface at the subcritical 
Reynolds number (Re=4.3 ×104) is similar to the corresponding 
distributions of the smooth spheres in the same regime. For both 
the golf ball and the smooth spheres, the pressure profile drops 
remarkably in the critical regime due to the transition from 
laminar boundary layer to turbulent boundary layer and the 
consequent delay of flow separation. At the supercritical 
Reynolds number (Re=1.1 ×105), the pressure profile of the golf 
ball appears to be comparable to the experiment data of the 
smooth sphere obtained at Re=3.18×105 (Achenbach, 1972) in 
terms of the minimum pressure value and its angular position. 
Moreover, the Cp value of the golf ball shows some local changes 
in several angular positions. Such variation is mainly affected by 
the local pressure distribution inside the dimples in the vicinity of 
the central joint line.  

The iso-surface of vortical flow structures around the smooth 
sphere and golf ball in the stationary case is provided in Fig.5 
using the Q-criterion method proposed by Hunt et al (1988). One 
can see that for the smooth sphere shown in Fig.5 (a), which 
exhibits a laminar boundary layer separation at φ=87°, the flow 
turns to become more turbulent in the shear layer after the 
complete separation and vortex structures form distinctly. Similar 
features can be also observed for the golf ball case at the 
subcritical Reynolds number, as shown in Fig.5 (c), in which the 
flow appears to stay smooth before separation at φ=75° even 
there are dimples distributed on the surface, suggesting a limited 
perturbation of the surface roughness to the flow in the subcritical 
regime. However, the influence of dimples on the flow appears to 

be more evident in the supercritical regime. As can be seen in 
Fig.5 (d), at the supercritical Reynolds number, the flow becomes 
turbulent when it traverses dimples, and small-scale vortices are 
generated inside dimples. Due to the perturbation caused by the 
surface roughness introduced by dimples, the momentum of the 
near-wall flow around the golf ball is increased, which makes the 
flow be able to travel further downstream until complete 
separation at φ=105°. And this occurs at a relatively low 
Reynolds number compared to the smooth sphere case, in which 
the turbulent boundary layer with high momentum is achieved at 
higher a supercritical Reynolds number and consequently delays 
the full flow separation at φ=102°, as shown in Fig.5 (b). 

Fig.6 visualizes the instantaneous wake flow structures 
respectively for the supercritical smooth sphere case and the 
supercritical golf ball case. It can be clearly observed from the 
wake flows that both the smooth sphere and the golf ball 
experience large-scale vortex shedding. An interesting 
phenomenon is that, especially for the smooth sphere, the wake 
flows show some deviation from the streamwise axis going 
across the centers of the spheres. Actually the statistics of the 
instantaneous aerodynamic forces in the supercritical regimes 
also indicate a nonzero lateral force exerted on both the stationary 
smooth sphere and the stationary golf ball, although the 
magnitude of the lateral force is to some extend suppressed in the 
golf ball case. This is also suggested by the wake structures in 
Fig.6, in which a less twisted flow pattern compared with the 
smooth sphere is shown behind the golf ball. 
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Figure 5: Flow structures (Q) around the smooth sphere and golf 
ball in the stationary cases: (a) Smooth at Re=1.0×104 (before the 
crisis); (b) Smooth at Re=1.14×106 (after the crisis); (c) Golf ball 
at Re=4.3×104 (before the crisis); (d) Golf ball at 
Re=1.1×105 (after the crisis) 

 
(a) 

 
(b) 

Figure 6: Wake flow structures behind the smooth sphere and 
golf ball in the stationary cases viewed on the x-z plane, (a) 
Smooth at Re=1.14×106 (after the crisis); (b) Golf ball at 
Re=1.1×105 (after the crisis) 
 

When self-rotating motion is imposed on a sphere/cylinder, it 
is well known that a certain amount of lift force acts on the 
sphere/cylinder depending on its spinning speed, which is called 
Magnus effect. It is explained based on the potential flow theory, 
while there is always discrepancy between the theoretical and 
actual values. The discrepancy is usually discussed with the 
sensitivity of the separation point of the boundary layer. The 
extreme case can be observed at around the critical Reynolds 
number where the direction of the lift force becomes opposite to 

the theoretical direction at specific rotational speed. This 
phenomenon is called negative/inverse Magnus effect. Muto et al. 
(2012) has conducted LES of rotating sphere and successfully 
reproduced negative Magnus effect at around the critical 
Reynolds number under certain rotating conditions. In the present 
study, particular attention was paid to the spinning spheres at the 
supercritical Reynolds numbers. 

Fig.7 displays the supercritical flow fields around the 
spinning smooth sphere (Re=1.14 ×106) and the spinning golf 
ball (Re=1.1 ×105) respectively. The instantaneous variables 
shown in this figure are the pressure distribution on the surfaces 
of the spheres and the velocity distribution in the flow fields. The 
incoming flow shown in this figure goes from left to right, and 
the spheres are rotating clockwise around y axis with the spin 

parameter Γ=0.1, thus the force pointing to the direction parallel 
to z axis is defined as the lift force.  

The time-averaged drag and lift coefficients for the smooth 
sphere case shown in Fig.7 are 0.219 and 0.213 respectively. For 
the golf ball case, correspondingly, the time-averaged drag and 
lift coefficients are respectively 0.239 and 0.129. Particularly, for 
both the smooth sphere and the golf ball, the drag coefficients 
obtained under spinning condition are slightly higher than the 
ones in stationary cases. This phenomenon might be attributed to 
the changes of the wake flow patterns. Concerning the lift force, 
one can easily conclude based on the statistic data that, at current 
spinning speed, positive lift forces are exerted on both the 
rotating smooth sphere and golf ball in the supercritical regime. 
This is also visually evidenced in Fig.7, in which one can clearly 
observe that the wake flows in both cases are declining 
downwards, suggesting a lift force pointing to +z direction. 
However, it is interesting that the lift force value is comparable to 
the drag force value in the smooth sphere case, whereas in the 
golf ball case, the lift force appears to be nearly 50% smaller than 
the corresponding drag force. This may suggest lift force 
suppression for the spinning golf ball as well as the stationary 
golf ball. 
 

 

(a) 



 

(b) 
Figure 7: Flow field around the spinning smooth sphere and golf 

ball with spin parameter Γ=0.1, (a) Smooth at Re=1.14×106 (after 
the crisis); (b) Golf ball at Re=1.1×105 (after the crisis) 
 

 

(a) 

 

(b) 
Figure 8: Wake flow structures behind the spinning smooth 
sphere and golf ball with spin parameter Γ=0.1 viewed on the x-z 
plane, (a) Smooth at Re=1.14×106 (after the crisis); (b) Golf ball 
at Re=1.1×105 (after the crisis) 
 

Further insights into the wake flow structures behind the 
rotating spheres are displayed in Fig.8 using the Q-criterion 
method. Obviously, there is large-scale vortex shedding behind 
both the rotating smooth sphere and golf ball with hair-pin 
structures forming in the wake flow areas some distance away 
from the spheres, as in the stationary cases. Particularly, for both 
cases, the small-scale vortex are evident before the complete flow 
separation from the spheres, indicating a turbulent boundary layer 
on both the forward rotating (above in the figure) and backward 
rotating sides, which may be one of the main reasons that 
explains the positive direction of the lift forces. 

 

Conclusions and Future Plan 
In the present study, the flow past a golf ball and a smooth 

sphere has been numerically analyzed under both the stationary 
and spinning conditions. Particular attention was paid to the 
supercritical cases. The simulation result shows that the drag 
crisis of the golf ball occurs at a remarkably lower Reynolds 
number compared with the smooth sphere. This phenomenon is 

due to the local flow separation above the golf ball dimples and 
the consequent delay of the complete flow detachment. With the 

spin parameter Γ=0.1, both the rotating smooth sphere and golf 
ball experience a slightly larger drag force compared with the 
stationary cases and a positive lift force at the supercritical 
Reynolds numbers. The lift force exerted on the spinning golf 
ball appears to be somewhat suppressed, compared to the smooth 
sphere. Such a phenomenon is also observed in the stationary 
cases. For the next step, simulations will be conducted for 
self-rotating cases at various Reynolds numbers around the 
critical area. How the dimples affect the generation of negative 
lift force will be further discussed. 
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