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ABSTRACT
The nucleation, growth, and coagulation of liquid

droplets in three-dimensional homogeneous isotropic tur-
bulence at Reλ ≈ 150 is simulated. Patches of dry and
cold gas mix with patches of hot gas saturated with va-
por of a condensable species, inducing nucleation of par-
ticles due to supersaturation. The simulation consists of
a three-dimensional direct numerical simulation of homo-
geneous isotropic turbulence with a statistically stationary
forced velocity field. All length and time scales of fluid
motion and scalar mixing are resolved adequately. For the
droplets phase, a model based on the quadrature method of
moments and a Lagrangian scheme for the solution of the
moment transport equations are employed. Results show
that droplets form early in the evolution of the flow field
and their concentration peaks on the cold side of the mix-
ing layers separating the patches of hot and cold gas, where
droplets nucleate most intensely. Conversely, the droplets
grow most rapidly on the hot side of the mixing layers. As
turbulent mixing displaces the droplets into regions of hot
and moist gas, the droplets’ size increases markedly. Condi-
tional statistics of the aerosol phase in the mixture fraction
space are employed to investigate this trend.

INTRODUCTION
The formation of aerosol particles in turbulent, spa-

tially inhomogeneous flows is a fundamental process in
nature and is relevant in many technological applications.
These include cloud formation (Pruppacher & Klett, 2010),
the production of advanced powders (Kodas & Hampden-
Smith, 1998), and soot formation (Attili et al., 2014).

In this work, we consider a flow configuration in which
aerosol particles form (nucleate) from a supersaturated va-
por and supersaturation is induced by the turbulent mixing
of two streams (a saturated stream and a cold one). As the
rates of nucleation and other aerosol processes are highly
sensitive to the scalar fields, turbulence has a strong effect
on aerosol dynamics. In the present work, a simulation of

the formation and evolution of a condensing aerosol in ho-
mogeneous isotropic turbulence is performed and analyzed.
The aerosol evolves due to the formation, growth, and coag-
ulation of dibutyl phthalate (DBP) droplets. This investiga-
tion is an extension of a previous work by the group, where
aerosol dynamics were simulated in a turbulent spatially-
evolving mixing layer (Zhou et al., 2014). In this work, the
homogeneous isotropic turbulence configuration is selected
to identify the Reynolds number of the flow unequivocally,
thereby facilitating parametric studies. Moreover, the flow
field is characterized by well-defined time scales, e.g. the
eddy turnover time, which may be compared to the time
scales of the processes responsible for the formation and
growth of the aerosol.

FORMULATION
Simulation of the Gaseous Phase

A direct numerical simulation (DNS) is employed for
the simulation of velocity, temperature, and vapor mass
fraction fields. The incompressible Navier-Stokes equa-
tions are solved with a finite difference method on a spa-
tially and temporally staggered grid with the semi-implicit
fractional step method of Kim & Moin (1985). Velocity is
linearly forced using the method of Rosales & Meneveau
(2005) in order to achieve a statistically-stationary velocity
field. The transport equations of the scalars (temperature
and mass fraction of DBP vapor) are discretized using the
third-order WENO scheme (Liu et al., 1994). The com-
putational domain of size L = 6.25mm is discretized into
134 million grid points (5123). This results in a grid size
∆x = 11.9 µm smaller than the Kolmogorov length scale
η = 12.5 µm. The solution is advanced with a time step
∆t = 0.5 µs, maintaining a unity CFL condition. The paral-
lel flow solver “NGA” (Desjardins et al., 2008) developed
at Stanford University is used to solve this system.

Due to the small size of droplets and low volume load,
the effects of aerosol phase on the momentum and the tem-
perature of the gaseous phase are neglected. On the other
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hand, the effect on the mass fraction of the vapor is consid-
ered, i.e.,

∂Y
∂ t

+~u ·∇Y −D∇2Y = Snuc.+Sgrow, (1)

where, Snuc. and Sgrow account to for gas-to-particle conver-
sion rates due to the nucleation and growth by condensation,
respectively. The simulation is carried out with unity Lewis
and Schmidt numbers, and constant density.

Simulation of the Aerosol Phase
All droplets are assumed to be spheres with a diame-

ter ξ . Thus the aerosol phase, at some point in time t and
space~x, is described by the particle size distribution (PSD)
function n(~x, t;ξ ), for which the raw moments µk(~x, t) are
defined as:

µk(~x, t) =
∞∫

0

ξ ′kn(~x, t;ξ ′)dξ ′. (2)

The Quadrature Method of Moments (QMOM) (McGraw,
1997) is used to describe of the aerosol phase. The transport
equations for the moments of the aerosol distribution are:

∂ µk

∂ t
+∇ ·µk~u =

(
∂n
∂ t

)

nuc
+

(
∂n
∂ t

)

cond
+

(
∂n
∂ t

)

coag
,

(3)
where, the three terms on the right-hand-side of the equation
represent aerosol dynamics (nucleation, growth by conden-
sation, and coagulation). The diffusion term is neglected
due to the large Schmidt number of aerosol particles. For
example, under standard atmospheric conditions, spherical
particles with a diameter of 10 nm (100 nm) have a Schmidt
number equal to 290 (2.2× 104). The nucleation rate is
modeled using the self-consistent correction to the classical
nucleation theory (Girshick & Chiu, 1990), the growth rate
of droplet by condensation is modeled by the generalized
Mason’s formula (Loyalka & Park, 1988), and the coagula-
tion kernel is modeled by the Fuchs model (Fuchs, 1964).

The Lagrangian Particles Scheme
The transport of the aerosol moments is performed

with a Langrangian particles method (Koumoutsakos, 2005;
Attili & Bisetti, 2013). The Lagrangian scheme overcomes
moments realizability problems encountered in Eulerian
frameworks (McGraw, 2012; Wright, 2007). Additionally,
the Lagrangian scheme has low numerical diffusion. This
makes it easy to track the sharp front of the motion of
aerosol particles, and makes it an ideal tool to investigate
the differential diffusion of aerosol particles and the gas.

In the Lagrangian particles scheme, the movement of
a large number of Lagrangian particles is tracked (a La-
grangian particle refers to a mathematical object rather than
a physical aerosol droplet). Physical variables of interest
(aerosol moments here) are tied to these Lagrangian parti-
cles and evolve along the Lagrangian trajectories. Within
this framework, the conservation equationsare separated
into two parts, convection and unsteady evolution.The con-
vection is dealt with through an averagescheme over par-
ticles, and the unsteady evolution ofthe variables along

0 0.2 0.4 0.6 0.8 1
0.1

1

10

τ
 (

m
s)

Z

 

 

τ
eddy

0

0.2

0.4

0.6

0.8

1

P
D

F
(Z

)

τ
n

τ
c

PDF

Figure 1: Distributions of the time scales (τn, τc, and
τeddy), the initial PDF of Z in mixture fraction space.

a trajectory is obtained by solving thecorresponding con-
trol equations,which are only ordinary differential equations
(Attili & Bisetti, 2013).

The domain is populated with 1.3 billion Lagrangian
particles (an average of ten particles per cell). The simula-
tion is performed on the IBM Blue Gene/P supercomputer,
“Shaheen”, available at King Abdullah University of Sci-
ence and Technology, using 8,192 cores. Time advance-
ment over one eddy turnover time requires 1.8 million core
hours.

RESULTS
Mixture fraction is related to temperature T and DBP

mass fraction (in the absence of consumption) as:

T = Tc +Z(Th−Tc), (4)

and

Y = YhZ, (5)

where Tc = −20◦C and Th = 112◦C are the temperatures
of the cold and hot streams being mixed, respectively. Yh =
1.43× 10−3 is the mass fraction of DBP vapor in the hot
stream corresponding to a fully saturated state.

In order to characterize the evolution of the aerosol
phase, we introduce two relevant quantities, τn and τc,
which represent the time scales for nucleation and coagu-
lation. Estimates for these two time scales are obtained by
evolving the aerosol in the absence of gas-phase mixing, ef-
fectively considering an ensemble of zero-dimensional re-
actors at various conditions, but accounting for the con-
sumption of gas-phase condensable vapor. In particular, τn
is the time for number density to reach the peak in the re-
actor, and τc is the time needed for coagulation to decrease
number density back to half of the peak value. By virtue of
the strong dependence of nucleation rates on the gas com-
position and temperature, τn and τc are smallest at the lo-
cation of peak nucleation rate at Z = Zm = 0.11. This is
shown in fig. 1, where the minimum values are τn = 0.5 ms
and τc = 2.5 ms for the present streams.

The length and velocity scales of fluid motion and mix-
ing are chosen to have a significant overlap between the
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Figure 2: The initial distribution of the mixture frac-
tion Z. The blue isosurface marks Z = 0.15 and the
red isosurface marks Z = 0.65.
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Figure 3: Distribution of the nucleation rate, and
growth rate in the free molecular regime in mixture
fraction space.

aerosol and the turbulent timescales. The choice of the
stream conditions is such that τn and τc at Z = Zm = 0.11
are of the same order. The Reynolds number based on the
Taylor scale is Reλ = 150. The Taylor scale is λ = 0.28
mm, the eddy turnover time scale is τeddy = 0.78 ms, and
the Kolmogorov time scale is τη = 11.3 µs.

The mixture fraction at the onset of the simulation is
a rescaled snapshot obtained from a previous simulation of
a decaing scalar after reaching a self-similar state, i.e., a
Gaussian distribution (Warhaft, 2000). The initial distribu-
tion of the temperature and the mass fraction of DBP vapor
are mapped from Z with a mean value of 0.4 and a standard
deviation of 0.1 (see fig. 2) according to Eq. (4) and Eq. (5).

Nucleation is maximum on the cold side at Z = 0.11,
whereas the growth rate of particles increases on the hot side
and peaks at Z = 0.76 as shown in fig. 3. Thus, droplets nu-
cleate on the cold side near the peak nucleation rate location
first.

By virtue of temperature being a conserved scalar, the
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Figure 4: Time evolution of the domain average tem-
perature and average vapor mass fraction.
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Figure 5: Time evolution of the domain averaged num-
ber density and volume fraction.

mean temperature in the domain remains constant through-
out the simulation. Conversely, after evolving the system
for one eddy turnover timescale, a slight decrease is ob-
served in the mean vapor mass fraction due to the conver-
sion into the liquid phase as shown in fig. 4.

At the beginning of the simulation, the domain-
averaged number density increases linearly in time until
t ≈ 0.3τeddy. After that, number density saturates because
of nucleation-suppression by mixing, a process explained as
follows. Due to the diffusion process, mixing drives mix-
ture fraction towards its mean value, and the probability of
finding a fluid parcel with high nucleation rate vanishes. On
the other hand, volume fraction keeps on growing as shown
in fig.5.

Unlike the scalar fields, the transport of droplets is
characterized by a very large Schmidt number, i.e., droplets
are convected along the pathlines, whereas the transport
of the scalar fields (T and Y ) includes diffusion processes.
The resulting differential diffusion between droplets and the
scalar fields causes a drift of the droplets in mixture frac-
tion or composition space (Zhou et al., 2014). This drift
moves droplets from the location where they nucleate to the
warmer regions of the domain where the growth rate of the
droplets increases, and droplets grow in size. Nucleation is
confined in the region 0 ≤ Z ≤ 0.3, and so is number den-
sity as shown in fig. 6. The effect of drift is shown in fig. 7,
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Figure 6: Number density (1011/cm3) in a selected
plane at t = 0.3τeddy. The red isocontours mark
Z = 0.3.
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Figure 7: Volume fraction (ppm) in a selected plane at
t = 0.3τeddy. The red isocontours mark Z = 0.3.

where the volume fraction of the liquid phase is shown.
Although number density is mostly confined in the region
of the flow where droplets nucleate, droplets that drift to-
wards the warm and humid regions of the flow (larger values
of mixture fraction) grow fastest creating peaks of volume
fraction.

The effect of drift can be observed through the con-
ditional statistics of aerosol quantities in mixture fraction
space as shown in fig. 8. Prediction of the number den-
sity and volume fraction can be obtained by evolving the
droplets without transport (as explained in the discussion
for τn and τc). These results are compared with the condi-
tional means computed from the DNS. As shown, the non-
mixed estimates are a lower bound for number density and
volume fraction, i.e., turbulent mixing results in droplets
drifting from the region of maximum nucleation rate to-
wards the warmer regions of the flow field. Although the
location of peak conditional mean volume fraction is close
to that of number density, peak volume fraction is shifted
towards the hot stream side. Moreover, due to the mixing
with the mean value, the variance of mixture fraction has
dropped by a factor of two, and the smallest mixture frac-
tion value increased to Z = 0.15.
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Figure 8: The scatter, the conditional mean, and the
non-mixed estimate of (a) number density N, (b)
volume fraction F , and (c) mean counter diameter
(d10 = µ1/µ0) of droplets in mixture fraction space
at t = 0.3τeddy.

CONCLUSION
The nucleation, growth, and coagulation of liquid

droplets in three-dimensional homogeneous isotropic tur-
bulence at Reλ ≈ 150 was investigated. A DNS was em-
ployed for the simulation of the gaseous phase along with
the QMOM for the aerosol phase. A Lagrangian particles
scheme was used to transport the moments of PSD. The
simulation showed that nucleation is suppressed by mix-
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ing within 0.3 eddy turnover times. Droplets nucleate ini-
tially at the cold side of domain (Z < 0.3). Drift, driven
by differential diffusion between droplets and the scalar
fields, moves some droplets to warmer regimes of the do-
main where growth is larger. This creates peaks of vol-
ume fraction and average droplet size outside the nucleation
zone.
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