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ABSTRACT

We perform a numerical simulation of the turbulent

flow in a small axisymmetric contraction using a subfil-

ter scale stress model derived from the partially integrated

transport modeling (PITM)method. Relatively to the exper-

iment, to reproduce the effects of the square-mesh biplane

grid on the uniform wind tunnel stream, we generate the

inflow condition by means of an analytical pseudo-random

field in a cubic box that is introduced in the inlet section

of the channel. As a result, it is found that the simulation

predicts fairly well this turbulent flow. As expected, the ini-

tial anisotropy is reduced in the contraction. Moreover, as a

promising result, the “return to anisotropy ” occurring af-

ter the contraction in the straight duct section is well recov-

ered according to the experiment. This work shows that the

PITM method used in conjunction with an analytical syn-

thetic turbulence generation as inflow is well suited for sim-

ulating this flow and allows an understanding of the physical

mechanisms acting in an axisymmetric contraction.

INTRODUCTION

Turbulent flow subjected to an axisymmetric contrac-

tion in the streamwise direction is encountered in many en-

gineering applications. As known, the effect of contraction

on the mean flow and on the turbulence is mainly to ac-

celerate the flow and to reduce the flow anisotropy while

the flow structures are appreciably modified when passing

through the contraction due to vortex stretching and ro-

tation (Uberoi and Wallis, 1966; Sjogren and Johansson,

1998; Jang et al., 2011) . Several authors, Uberoi and

Wallis (1966), Comte-Bellot and Corrsin (1966) , as well

as Bernett and Corrsin (1978) studied the effects of grid-

generated turbulence in a small contraction ranging from

1.19 to 1.41. In this framework, the latter experiment of

Uberoi and Wallis (1966) deserves a particular interest be-

cause it presents a complex phenomena in physics of fluid

turbulence that still raises some questions of interpretation

in term of turbulence. In this experiment, initial fluid par-

ticles are convected into a channel through a square-mesh

biplane grid and are then subjected to a sudden contraction.

The effect of the square mesh biplane grid made of round

wooden rods on the uniform stream flow was to generate

an anisotropic turbulence just downstream the grid. Just

behind the grid, the streamwise fluctuating velocity corre-

lations was τ22 = τ33 ≈ τ11/1.4. The measurements indi-

cated that this ratio τ11/τ22 initially closes to 1.4 returned

to unity through the contraction because of the rapid de-

formation of the mean flow. But after the contraction in

the straight duct section, this ratio however gradually rein-

creased to its pre-contraction value. This phenomena con-

stitutes a paradox which still deserves interest in physics of

fluid turbulence. The objective is then to investigate this

complex flow in a small contraction by performing a nu-

merical simulation using the partially integrated transport

modeling (PITM) method including a second moment clo-

sure developed by Chaouat and Schiestel, (2005, 2009) in

conjunction with an analytical synthetic turbulence genera-

tion for inflow conditions. Indeed, instead of computing the

fine grained turbulence around the grid which is too costly

in term of computing time and memory resources, we de-

velop a specific method to generate an anisotropic analyti-

cal pseudo-random field. This artificial field is created in a

cubic box that is pushed into the computational domain to

produce the inlet conditions of the computational domain.

WIND TUNNEL EXPERIMENT

Experimental results

The wind tunnel used in the experiment of Uberoi and

Wallis (1966) is sketched in figure 1. The dimension of

the square-mesh biplane grid is D1 = 60.96 cm whereas

the dimension of the wind tunnel in the longitudinal direc-

tion is L1 = 254 cm. The small axisymmetric contraction of

the wind tunnel cross-section is of ratioC = A1/A2 = 1.25,
where A1 and A2 denote the section areas before and af-

ter the contraction. The Reynolds number Re = UbD1/ν
based on the bulk velocity Ub, the height D1 and the kine-

matic viscosity ν takes on the value Re≈ 4.47105 . Third set
of experiments (Uberoi and Wallis, 1966) were performed

with a first square-mesh biplane grid of 5.08 cm made of

round wooden rods of 1.27 cm diameter, a second square-

mesh grid of 2.54 cm made of rods of 0.635 cm diameter

and also a third square-mesh grid of 1.27 cm made of rods

of 0.3175 cm diameter corresponding to the Reynolds num-

bers RM =UbM/ν = 9300, 18 600 and 37 200, respectively,

where M denotes the mesh size of the grid (5.08 cm, 2.54

cm and 1.27 cm). As a result, it was found that the effect of a

fixed contraction on the turbulence decreases with decreas-

ing mesh size of the grid and that for all cases, the initial

ratio of the stress components τ11/τ22 close to 1.4 behind

the grid gradually decreases in the axisymmetric contrac-

tion and reincreases after passing through the axisymmetric

contraction in the uniform straight section. This outcome
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was observed for all grids of three mesh sizes M.

Grid-turbulence
In the present case, we focus interest on the case RM =

37.2 102 because of its higher contraction effects on the tur-
bulence. In the experiment, the largest scales in the grid-

generated turbulence are essentially determined by the mesh

size of the grid M whereas the smallest scales are fixed

by the Kolmogorov law. The ratio α = 10−3U2
b /τ11 and

β = 10−3U2
b /τ22, as well as the ratio of the streamwise tur-

bulent stress to the spanwise turbulent stress γ = τ11/τ22
are measured in the center of the channel at different grid

Reynolds numbers RM . The state of turbulence just behind

the grid is then determined from the experiment suggesting

that α = 10−3U2
b /τ11 = 0.3, (τ11/U

2
b = 0.33%), just after

the grid. As the ratio γ = τ11/τ22 ≈ 1.4, the turbulent energy
is easily computed as k0 = 0.49 m2/s for the bulk velocity

Ub = 11.0 m/s. The dissipation-rate is determined by the

Reynolds number from the relation Rt = k2/νε . Consider-
ing the experiments of Comte-Bellot and Corrsin (1966) ,

and Sjögren and Johansson (1998) , the Reynolds number

is set to 1600 implying that the dissipation rate takes on the

value 10.0 m2/s3 for ν = 1.5010−5 m2/s. The frequency

is then ε0/k0 = 20.4 s−1. The Kolmogorov scale η0 com-

puted as η0 = (ν3/ε0)
1/4 is 0.135 mm whereas the large

scale computed as L0 = k
3/2
0 /ε0 is close to 3.43 cm which

is of the same order of the mesh size M of the experimental

biplane grid (5.08 cm, 2.54 cm and 1.27 cm).

NUMERICAL SIMULATION
Filtering process and governing equations

In PITM, as for large eddy simulations, any flow vari-

able φ is decomposed into a large or resolved scale φ̄ and

a subfilter or modeled scale φ>. As usually, the filtered

variable φ̄ is defined by the filtering operation as the con-

volution with a filter G in space φ = G∗φ that leads to the

computation of a variable convolution integral

φ̄(x, t) =
∫

R3
G [x−ξ ,∆]φ(ξ , t)dξ (1)

where ∆ denotes the filter-width. In view of the statistical

averaging process, the instantaneous variable φ can also be

decomposed into a statistical mean part 〈φ〉 and a fluctu-

ating part φ ′ leading to φ = 〈φ〉+ φ ′. The instantaneous

fluctuation φ ′ includes in fact the large scale fluctuating

part φ< and the small scale fluctuating part φ> such that

φ ′ = φ< + φ>. So that φ can then be rewritten as the

sum of a mean statistical part 〈φ〉, a large scale fluctuat-

ing part φ< and a small scale fluctuating part φ> as follows

φ = 〈φ〉+φ<+φ>. The first two terms correspond to the

filtered velocity φ̄ = 〈φ〉+φ< implying that the large scale

fluctuating part is simply the difference between the filtered

and the statistical quantities, φ< = φ̄ −〈φ〉. The filtering of
the instantaneous Navier-Stokes equation produces the re-

solved scale motion as follows, provided the commutation

terms are negligible (Chaouat and Schiestel, 2013)

∂ ūi
∂ t

+
∂ (ūiū j)

∂x j
=− 1

ρ

∂ p̄

∂xi
+ν

∂ 2ūi

∂x j∂x j
− ∂ (τi j)s f s

∂x j
(2)

where ui, p, ν , (τi j)s f s, are the velocity vector, the pres-

sure, the molecular viscosity and the subfilter-scale stress

tensor, respectively. The subfilter-scale tensor (τi j)s f s is

defined by the mathematical relation (τi j)s f s = uiu j− ūiū j .

The presence of the turbulent contribution (τi j)s f s in equa-

tion (2) indicates the effect of the subfilter scales on the re-

solved field. The resolved scale tensor is defined by the re-

lation (τi j)les = ūiū j −〈ui〉
〈
u j

〉
. The Reynolds stress ten-

sor τi j including the small and large scale fluctuating ve-

locities can be computed as a first approximation as the

sum of the subfilter and the resolved stress tensors τi j =〈
(τi j)s f s

〉
+
〈
(τi j)les

〉
whereas the statistical turbulent ki-

netic energy is obtained as the half-trace of the stress tensor

τi j leading to k =
〈
ks f s

〉
+ 〈kles〉. Closure of the momen-

tum equation is necessary for the subfilter turbulent stress

tensor (τi j)s f s which is modeled by means of its transport

equation.

PITM method
Principle of the method

The PITMmethod allows to perform hybrid non-zonal

RANS/LES simulations of turbulent flows (Schiestel and

Dejoan, 2005; Chaouat and Schiestel, 2005; Chaouat, 2012)

on coarse grids when the cutoff wave number associated

with the grid size can be placed before the inertial zone as

far as the grid size is however sufficient to describe correctly

the mean flow. In the present case, as the flow anisotropy

is a central subject of investigation, we apply the subfil-

ter scale stress transport model derived from PITM which

is based on a second moment closure (SMC) to perform

this wind-tunnel flow. This model relies on the transport

equations for the subfilter-scale stresses (τi j)s f s and dis-

sipation rate εs f s (seven equations) and constitutes there-

fore in its formulation one of the most advanced model

used in hybrid RANS/LES simulations (Fröhlich and Von

Terzi, 2008) . The model is governed by some functions

of the dimensionless cutoff parameter ηc = κcLe involving

the cutoff wave number κc = π/∆ and the integral turbu-

lent length scale Le = k3/2/ε , built using the total turbulent

kinetic energy k =
〈
ks f s

〉
+ 〈kles〉, the total dissipation rate

ε =
〈
εs f s

〉
+ 〈ε<〉, itself composed of the subfilter trans-

fer rate εs f s and the resolved large scale dissipation rate

ε<. So, the PITM equations describe the physical turbu-

lent processes involving the production, dissipation and flux

transfer of the partial turbulent energy associated with each

spectral zone [0,κc], [κc,κd ] and [κd ,∞[ where κc and κd

denote the cutoff wave number and dissipative wave num-

ber, respectively, and can be interpreted as spectral balance

equations.

Subfilter scale stress transport equation
The transport equation for the subfilter stress tensor can

be written in the simple compact form as

∂ (τi j)s f s
∂ t

+
∂

∂xk

(
ūk(τi j)s f s

)
= Pi j+Πi j +Ji j −

2

3
δi jεs f s

(3)

where the terms appearing in the right-hand side of this

equation are identified here as subfilter production, redis-

tribution, diffusion and dissipation, respectively. The pro-

duction term Pi j accounts for the interaction between the

stresses and the filtered velocity gradients

Pi j =−(τik)s f s
∂ ū j

∂xk
− (τ jk)s f s

∂ ūi
∂xk

(4)
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The redistribution term Πi j appearing in equation (3) is

modeled by considering its corresponding modeling in

RANSmethodology. This modeling implicitly assumes that

the interaction mechanisms of the subgrid scales with the re-

solved scales of the turbulence is of the same nature than the

interaction mechanisms involving all the fluctuating scales

with the main flow. However, since the small scales return

more rapidly to isotropy than the large scales, the slow re-

distribution term Π1
i j increases with the cutoff wave num-

ber κc in order to strengthen the return to isotropy for large

wave numbers. This argument was previously adopted in

multiple-scale models (Schiestel, 1987) considering that the

return to isotropy is of higher intensity in the spectral range

of high wave numbers. Taking into account these argu-

ments, the redistribution termΠi j is decomposed into a slow

part Π1
i j that characterizes the return to isotropy due to the

action of turbulence on itself

Π1
i j =−c1s f s

εs f s
ks f s

(
(τi j)s f s−

1

3
(τmm)s f sδi j

)
, (5)

and a rapid part, Π2
i j that describes the action of the filtered

velocity gradients

Π2
i j =−c2

(
Pi j−

1

3
Pmmδi j

)
, (6)

where c1s f s plays the same role as the Rotta coefficient but

is no longer constant whereas c2 is the same coefficient used

in RANS modeling. In practice, the function c1s f s is mod-

eled as c1s f s = c1α(η) where c1 is the usual Rotta constant
coefficient used in statistical modeling and α is an increas-

ing function of the parameter η . The diffusion terms Ji j is

modeled assuming a well-known gradient law

Ji j =
∂

∂xm

(
ν

∂ (τi j)s f s
∂xm

+cs
ks f s

εs f s
(τml)s f s

∂ (τi j)s f s
∂xl

)
(7)

where cs is a constant coefficients.

Subfilter scale dissipation-rate transport
equation

Equation (3) needs to model the subfilter scale

dissipation-rate εs f s at high Reynolds number. This mod-

eling is made by means of its transport equation that reads

∂εs f s
∂ t

+
∂

∂xk

(
ūkεs f s

)
= cs f sε1

εs f s
ks f s

P−cs f sε2

ε2s f s
ks f s

+Jε (8)

where Jε denotes the diffusion term. In equation (8),

the coefficient cs f sε1 appearing in the source term of the

dissipation-rate equation is the same as the one used in

the corresponding RANS dissipation equation cs f sε1 = cε1
whereas the coefficient cs f sε2 appearing in the destruction

term of the dissipation-rate equation is now given by

cs f sε2 = cε1 +

〈
ks f s

〉

k
(cε2 −cε1 ) (9)

where cε1 and cε2 are the constant coefficient used in the sta-

tistical RANS dissipation-rate equation. The ratio
〈
ks f s

〉
/k

appearing in equation (9) is evaluated by reference to an an-

alytical energy spectrum E(κ) inspired from a Von Kármán

spectrum considered as a limiting equilibrium distribution

leading to the result

cs f sε2(ηc) = cε1 +
cε2 −cε1[

1+βη η3
c

]2/9 (10)

Equation (10) indicates that the parameter ηc acts like a

dynamic parameter which depends on the location of the

cutoff wave number κc within the energy spectrum and the

value of the function cs f sε2 then controls the relative amount

of turbulence energy contained in the subfilter range. The

theoretical value of the coefficient βη in equation (10) is

βη = [2/(3CK)]
9/2 where CK is the Kolmogorov constant

(Chaouat and Schiestel, 2009) . The diffusion term (Jε )s f s
is modeled by a gradient tensorial law

Jε =
∂

∂x j

(
ν

∂εs f s
∂x j

+cε
ks f s

εs f s
(τ jm)s f s

∂εs f s
∂xm

)
(11)

where cε is a constant coefficient.

Inlet condition
The flow conditions are nominally atmospheric air.

The simulation of the flow around the square-mesh biplane

grid made on round wooden rods (Uberoi and Wallis, 1966)

is difficult to perform numerically because of the three di-

mensional geometry of the grid that requires a specific work

in mesh generation. In addition, the simulation of the flow

details around the fine grid is extremely costly in term

of computational resources, both for the number of grid-

points and computer time. Taking into account these con-

straints, we prefer to create an anisotropic pseudo-random

turbulence field characterized by its anisotropy condition as

τ22 = τ33 ≈ τ11/1.4 by means of an analytical method to

produce the inlet conditions. This procedure consists in

generating a complete tridimensional flow in a cubic box

at a given time that is then progressively moved at the in-

let of the computational domain of the wind-tunnel with a

constant convection velocity corresponding to the uniform

stream flow of the experiment. The instantaneous variables

including the velocity and the turbulent stresses of the flow

field in the entrance of the computational domain are then

interpolated in space discretization from the box flow so-

lution. Because of the long time simulation that is neces-

sary to reach for computing the statistics, several cubes are

in fact generated, independently from each other, and en-

forced in the axisymmetric contraction domain. A thorough

review on methods of generation of synthetized turbulence

has been conducted recently by Shur et et al. (2014) . In the

present case, we consider the method of Roy (1980) initially

developed for isotropic fields and we extend it to account

for anisotropic fields by applying a transformation vector

on the isotropic vector stream function (Befeno and Schies-

tel, 2007) . The first step consists in generating an homo-

geneous isotropic field, uniformly distributed on a sphere

of radius unity in the spectral space by means of a random

vector stream function ψ̂(κ). The fluctuating velocity is

then obtained from the stream function as û = κ ∧ ψ̂ with

specific conditions imposed on ψ to satisfy the energy equa-

tion with a given density energy E(κ) imposed. The second
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step consists in applying a second order tensor β operat-

ing on the isotropic vector field to produce the anisotropic

flow field. As a result, the velocity in the spectral space is

then given by û(κ) = κ ∧βψ̂(κ) implying that the continu-

ity equation is still preserved. The tensor β is determined by

means of algebra calculus in the spectral space to get the de-

sired anisotropic resolved field. The starting point consists

in applying another tensor transformation α on the velocity

itself leading to û(κ) = α(κ ∧ ψ̂(κ)). The tensor β is then

expressed as a function of α . The resulting equation finally

reads û(κ) = α(κ ∧ ψ̂(κ)) = κ ∧βψ̂(κ) or for the i com-

ponent, ûi = jκ jαimεm jkψ̂k = jεi jkκ jβkmψ̂m. The spectral

turbulent energy associated with the wave number κ is then

given by 〈u(κ)u∗(κ)〉. To reproduce the axisymmetric tur-

bulence of the Uberoi andWallis experiment, it is found that

β22 = β33 and β11/β22 < 1. Finally, we take the spherical

mean M (Jeandel et al., 1978)

M (ψ(κ)) =
1

A

∫ ∫

A
ψ(κ) dA (12)

of the equations, where A denotes the area element on the

sphere of radius κ = |κ|, to get quantities which are not

depending on the wave number. Setting β11 = 1−2γ , β22 =
1+ γ , β33 = 1+ γ , we show that γ is then solution of a

second degree equation and its exact value is obtained by

successive approximations. The resolved scale stress as a

function of the cutoff wave number κc given by the grid-

size of the box is then computed from integration of the

spectral Reynolds stress tensor as follows

τi j =
∫ ∫ ∫ 〈

ûi(κ)û
∗
j(κ)

〉
d3κ (13)

The subfilter scale stresses are computed by a viscosity

model using the Boussinesq hypothesis verifying also the

anisotropy condition. So that, the resolved and subgrid tur-

bulent fields are built in order to satisfy the anisotropy con-

dition from a statistical point of view in the whole cubic

domain at a given time for all turbulence scales.

Wall condition
No slip boundary conditions are imposed at the walls.

To get accurate results, the wall sublayers are fully calcu-

lated by the turbulence model at low Reynolds number with-

out requiring any empirical law of the wall.

NUMERICAL METHOD AND CONDITIONS OF
COMPUTATIONS

The present numerical simulation solves the filtered

Navier-Stokes equation and seven transport equations for

the subfilter scale stress tensor (τi j)s f s and dissipation rate

εs f s. The equations are integrated in time using an explicit

Runge-Kutta scheme of fourth-order accuracy along with

an implicit iterative scheme for the source terms. The con-

vective fluxes at the cell interfaces resulting from the vol-

ume technique are computed by an approximate Riemman

solver of fourth-order accuracy in space. The simulation is

performed on a coarse curvilinear mesh 100×70×70 grid

points in the streamwise x1 and lateral directions (x2,x3).
The use of a coarse grid is deliberate choice because the aim

is precisely to appreciably reduce the computational cost

while obtaining satisfying accurate solution. Note that in

the present case, highly resolved large eddy simulation us-

ing viscosity models is out of reach because of the large di-

mension of the channel L1 = 2.54 m and the high Reynolds

number of the flow Re ≈ 4.47105 . The statistics of the

PITM simulation are obtained by averaging in time the

instantaneous flow accounting for roughly five convective

time scale T = D1/Ub whereUb is the bulk velocity.

NUMERICAL RESULTS
Inlet turbulence field

The anisotropic turbulence is performed on a cubic box

of dimension D1 = 0.6096 m accounting for N = 683 grid-

points. The wave numbers are defined by κm = 2π/mwhere

m varies in the range [−N/2+1,N/2] leading to a minimum

wave number κmin = 10.13 m−1 and κmax = π/∆ = 344.5
m−1. However, the effective wave number retained in the

present case is κc = 103 m−1 to suppress high frequencies

of the fluctuating velocities. It is found that the param-

eter γ introduced in the matrix β takes on the value γ =
0.198 to get the desired anisotropy turbulent field. Figure 2

shows the vortical activity of the synthetic turbulence for the

anisotropic field verifying τ11/k = 0.823, τ22/k = 0.588,
τ33/k = 0.588. The isosurfaces are illustrated by the Q cri-

terion defined as Q = 1
2 (Ωi jΩi j − Si jSi j) corresponding to

the balance between the local rotation rate Ω and the strain

rate S of the velocity. Although the turbulent field is artifi-

cial, i.e., not a solution of the Navier-Stokes equations, one

can observe at a first sight the presence of vortical elongated

structures associated with the large scales.

Key features of the axisymmetric contraction
Turbulent flow structures Figure 1 shows the

Q isosurfaces of the flow performed on the coarse mesh

illustrating the vortical activity and the instantaneous flow

structures. As expected, the vortical activity is of higher in-

tensity in the contracting zone than in the straight section of

the channel because of the effect of contraction on the ve-

locity gradients. Moreover, the flow structures appear more

elongated after the contraction.

friction coefficients Figure 3 displays the evo-

lution of the friction coefficient C f = τw/(0.5ρU2
b ) along

the wall in the streamwise direction. It can be seen that

the friction coefficient slightly decreases in the straight en-

trance section of the channel. It highly increases in the

contracting zone and decreases rapidly just after the con-

traction. Then, it gradually decreases again in the straight

section of the channel towards the exit. As this coefficient

takes on positive value, one can deduce that the contraction

value C = 1.25 is too small to induce the detachment of the

boundary layer.

Velocity and turbulent stresses Figure 4

exhibits the mean velocity profiles versus the channel height

at several locations of the channel before the contraction at

x1/D1 = 0.2 and after the contraction at x1/D1 = 2. The

flatness of the mean velocity due to the turbulence effect is

well marked. According to the contraction value C = 1.25,
the mean dimensionless velocity goes from unity to 1.25

when passing the contraction. Figure 5 displays the evolu-

tion of the streamwise and lateral Reynolds stresses normal-

ized by the bulk velocity τ11/U
2
b and τ33/U

2
b , respectively,
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at the same locations illustrating the effect of the axisym-

metric contraction on the turbulence. Just after the contrac-

tion, the flow reaches an isotropy state of turbulence char-

acterized by τi j = 2/3kδi j . Apart from the wall region that

reveals the presence of turbulent peaks of turbulence, the

stress profiles are almost uniform in the cross sections in-

dicating that the flow can be considered as locally homoge-

neous.

Flow anisotropy Figure 6 shows the evolution of

the dimensionless bulk velocity U∗
b and the ratio of the tur-

bulent stresses τ11/τ22, respectively, along the centerline of
the channel in the streamwise direction both for the RANS

computation using the Reynolds stress model (Launder and

Shima, 1989) and for the PITM simulation. For PITM, note

that the turbulent stress τi j is computed as the sum of the

subgrid and resolved stresses. As observed in the preceding

section, the effect of the axisymmetric contraction is well

visible on the dimensionless bulk velocity which goes from

unity to 1.25 after the contraction. As expected, the RSM

model here based on a single-scale of turbulence is unable

to reproduce the reincrease of anisotropy after the contrac-

tion. In RANS methodology, only multiple-scale modeling

succeeded to reproduce this effect (Schiestel, 1987) . In the

present case, it appears that the PITM simulation provides a

ratio anisotropy τ11/τ22 that agrees relatively well with the

experimental data. More precisely, the ratio initially closes

to 1.4 goes to unity through the contraction because of the

rapid deformation due to the mean flow and returns to its

pre-contraction value in the straight duct section. This phe-

nomena of the return to anisotropy can be explained by the

relaxation process of the turbulence scales. In the contrac-

tion, the turbulence is isotropic because the large scale and

small scale anisotropies are just compensating. When pass-

ing from the contraction to the straight section of the chan-

nel, the small scale motions return more rapidly to isotropy

than the large scales, so that the anisotropy of the large scale

that was temporarily hidden by the small scales before the

contraction reappears. This interpretation of scale effect is

currently investigated by means of scale separation of the

turbulent flow along the centerline of the channel.

CONCLUSION

A numerical simulation of the turbulent flow in the

small axisymmetric contraction of the wind tunnel designed

by Uberoi and Wallis using the subfilter scale stress model

derived from the partially integrated transport modeling

(PITM) method has been performed on a coarse mesh. In

conjunction with the turbulence model, a random velocity

field has been used to generate the inlet turbulence espe-

cially with the aim to reproduce the effects of the square-

mesh biplane grid on the uniform wind tunnel stream. As

a result, it is has been found that the PITM simulation, al-

though performed on a coarse mesh, predicts this flow fairly

well in good agreement with the experiment. In particular,

PITMwas able to reproduce the reincrease of the anisotropy

ratio τ11/τ22 in the straight section along the centerline of

the channel after the contraction.
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Figure 1. Vortical activity illustrated by the Q isosurfaces

at Re = 4.4105 . PITM simulation 100× 70× 70. View

of the small axisymmetric contracted channel in real aspect

ratio Uberoi & Wallis (1966) (L1 = 2.54 m, D1 = 0.61 m,

C = A1/A2 = 1.25).

Figure 2. Figure 3: View of the anisotropic turbulent field

generated in a cube. Vortical activity illustrated by the Q

isosurfaces.
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Figure 3. Friction coefficient C f = τw/(0.5ρU2
b ) along

the wall at Re= 4.47105 .
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Figure 4. Mean velocity u1/Ub at various locations

x1/D1 = 0.2: —; x1/D1 = 2: .-.-.
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Figure 5. Reynolds stress τii/U
2
b at various locations

x1/D1 = 0.2: (i=1) N; (i=2) H. x1/D1 = 2: (i=1) ◭; (i=2)

◮.
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Figure 6. Evolution of the dimensionless bulk velocity

U∗
b (x1), and the ratio τ11/τ22 on the centerline of the chan-

nel in the streamwise direction. Experiment ◦ Uberoi &

Wallis (1966). single-scale RSM model .-.-.; PITM —-;

Re= 4.47 105
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