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ABSTRACT
A detailed discussion of explicit algebraic turbulence

models in the case of active scalars is given. In particular,
we discuss the appearance of nonlinearities in the models
and the need for explicit solutions of the resulting nonlin-
ear equations. Focussing on a recently published model
for two-dimensional stratified flows, we present an intu-
itive way of approximating the solution of a sixth-order
polynomial equation for the production-to-dissipation ratio
(P+G )/ε of turbulent kinetic energy K. This formulation
is shown to be consistent for turbulent channel flow with
stable and unstable stratification. The result is important
for obtaining a robust model with a correct behaviour of the
turbulence production in different limits of shear and buoy-
ancy. The results have recently been published in Lazeroms
et al. (2015).

INTRODUCTION
Turbulent flows are often modelled using the

Reynolds-averaged Navier-Stokes (RANS) approach,
where the quantities describing the flow are split into a
mean part and a fluctuating part. The RANS equations
for the mean quantities containg unknown correlations
(the Reynolds stresses and turbulent fluxes), for which
appropriate models need to be found. The class of explicit
algebraic Reynolds-stress models (EARSM) provides a
good compromise between the simplicity of standard
eddy-diffusivity models (EDM), and the adequate physics
of differential Reynolds-stress models (DRSM). The
Reynolds-stress transport equations from a DRSM are
approximated by algebraic equations by means of an
appropriate equilibrium assumption. In order to avoid
numerical problems associated with solving such algebraic
equations, one would like to find an explicit solution, hence
the term explicit algebraic models.

Since Rodi (1972, 1976), many explicit algebraic mod-
els have been derived using the weak-equilibrium assump-
tion, under which the advection and diffusion of dimen-
sionless fluxes (e.g. the dimensionless Reynolds-stress
anisotropy tensor) are neglected. Although this assump-
tion is quite general, it inevitably generates a nonlinear sys-
tem of equations for the Reynolds stresses. In cases with-
out buoyancy, these nonlinearities can be treated by finding
the exact solution of a cubic equation for the production-
to-dissipation ratio (Girimaji, 1996; Wallin & Johansson,
2000). Retrieving the exact solution is important for ob-
taining a correct behaviour of the turbulence production for
large strain rates, as well as avoiding possible numerical is-
sues associated with solving higher-order equations itera-
tively. Similar results hold for passive scalars in turbulent
flows (Wikström et al., 2000).

In recent years, algebraic models have been derived for
turbulent flows with buoyancy, in which temperature acts as
an active scalar (So et al., 2002, 2004; Violeau, 2009; Laze-
roms et al., 2013; Vanpouille et al., 2013, 2014). In these
cases the Reynolds-stresses and turbulent heat flux are mu-
tually coupled, so that the system of equations one needs to
solve becomes more complicated. As a result, one retrieves
a sixth-order polynomial equation for the production-to-
dissipation ratio (in the case of two-dimensional mean
flows), for which no exact solution can be found. Many
authors avoid this complication by stating that the equation
can be solved numerically. By doing so one would lose the
practical advantage of a fully explicit algebraic model over
DRSMs. Instead, a fully explicit formulation that approxi-
mates the solution of the nonlinear equation is preferred.

Here we present a new, intuitive way of formulating the
production-to-dissipation ratio in explicit algebraic models,
based on previous work for two-dimensional stratified flows
(Lazeroms et al., 2013), and show that the approximate so-
lution is close to the exact solution.
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MODEL DESCRIPTION
In the case of turbulent flows with buoyancy, the goal

of any RANS model is to find appropriate expressions for
the Reynolds stresses uiu j and turbulent heat flux uiθ in
order to close the equations for the mean velocity Ui and
the mean (potential) temperature Θ. The explicit algebraic
model is derived from the transport equations for uiu j and
uiθ , which are strongly coupled through the effect of buoy-
ancy. These equations are reformulated in terms of the
Reynolds-stress anisotropy ai j and a normalized heat flux
ξi:

ai j =
uiu j

K
− 2

3
δi j ξi =

uiθ√
KKθ

(1)

where K = ukuk/2 is the turbulent kinetic energy and Kθ =

θ 2/2 half the temperature variance. As shown in Lazeroms
et al. (2013, 2015), neglecting advection and diffusion of ai j
and ξi results in algebraic equations of the following form
(using matrix notation):

N(aaa,ξξξ )aaa = LLL(a) (aaa,ξξξ ; SSS,ΩΩΩ,ΘΘΘ,ΓΓΓ) (2a)

Nθ (aaa,ξξξ )ξξξ = LLL(ξ ) (aaa,ξξξ ; SSS,ΩΩΩ,ΘΘΘ,ΓΓΓ) (2b)

in which the right-hand sides are linear functions of ai j and
ξi, as well as a set of nondimensionalized tensors and vec-
tors depending on the mean flow: the mean strain-rate ten-
sor Si j , the mean rotation-rate tensor Ωi j , the mean tem-
perature gradient Θi, and the buoyancy vector Γi. These
quantities are defined as:

Si j ≡
τ
2

(
∂ Ui

∂x j
+

∂ U j

∂xi

)
Ωi j ≡

τ
2

(
∂ Ui

∂x j
− ∂ U j

∂xi

)

Θi ≡ τ

√
K
Kθ

∂ Θ
∂xi

Γi ≡ τ
√

Kθ
K

βT gi (3)

where τ is the turbulence time scale, βT the thermal expan-
sion coefficient, and g j the gravitational acceleration.

Here we focus on the left-hand sides of equations (2),
which contain the factors N and Nθ that depend on ai j and
ξi. Hence, equations (2) are essentially nonlinear. How-
ever, by assuming that N and Nθ are known coefficients,
solving (2) for ai j and ξi becomes a linear problem, which
can be treated by means of linear expansions. The linear
part of the problem has been discussed in previous work
(see Lazeroms et al. 2013, in which the problem is solved
for two-dimensional flows). The resulting model for ai j and
ξi has the following form:

aaa =
M

∑
k=1

βkTTT (k) ξξξ =
M′

∑
k=1

λkVVV (k) (4)

where TTT (k) and VVV (k) are tensorial combinations of Si j, Ωi j,
Θi and Γi.

This method only partly solves the problem, as the fac-
tors N and Nθ are still unknown. Hence, the coefficients
βk and λk in the aforementioned expansions still depend on

these factors. The full expressions for N and Nθ are as fol-
lows:

N(aaa,ξξξ ) = c1−1+
P +G

ε
= c1−1−akmSkm−Γkξk (5a)

Nθ (aaa,ξξξ ) = cθ1 +
1
2

(
P +G

ε
−1− 1

r

)

= cθ1 +
1
2

(
N− c1−

1
r

)
(5b)

where P and G are shear and buoyancy production of tur-
bulent kinetic energy K, respectively, and ε its dissipation
rate. Moreover, {c1,cθ1,r} are model constants. Hence,
N and Nθ are directly related to the total production-to-
dissipation ratio (P+G )/ε . Furthermore, Nθ is a function
of N,1 which means that we only need to consider solving
for N. This is the main topic of the current paper.

THE NONLINEAR EQUATION
Now we discuss the nonlinear part of the problem, fo-

cussing on (two-dimensional) horizontal parallel flows with
buoyancy, in which the velocity gradient and temperature
gradient are aligned with gravity, while the flow is in the
perpendicular direction (e.g. horizontal channel flow). By
inserting the linear expansions (4) for ai j and ξi into equa-
tion (5a) (and using (5b) to eliminate Nθ ), one retrieves a
polynomial equation for N. In the current case with buoy-
ancy, it turns out that the polynomial equation has degree 6,
which means that no exact solution can be found for its
roots. It is at this point where many authors (e.g. So et al.
2002, 2004; Vanpouille et al. 2013, 2014) decide to solve
the remaining equations for (P+G )/ε numerically, which
in our opinion does not yield an explicit algebraic model
and might yield numerical difficulties. The great advan-
tage of EARSMs lies in the fact that no additional iterations
should be necessary to evaluate the closure, other than the
inevitable addition of differential equations for the turbu-
lent scales, such as the K− ε-model. The other extreme is
to use a (constant) ad hoc value for (P +G )/ε (suggested
by e.g. Violeau 2009), which makes the model internally
inconsistent and gives a wrong behaviour of the turbulence
production at large strain rates (as explained by Girimaji
1996; Wallin & Johansson 2000).

Since the exact solution for N cannot be found, it is our
aim to devise an approximate expression satisfying two re-
quirements: (1) it should be fully explicit in the mean quan-
tities (for computational reasons), and (2) it should be as
close to the exact solution as possible (to obtain a consis-
tent model with a correct asymptotic behaviour).

We begin the search for an approximation for N by con-
sidering the following two important limits:

1. Zero buoyancy (Γi → 0 and G /ε → 0), or shear-
dominated regime, occuring e.g. in near-wall regions
of wall-bounded flows.

2. Zero shear (Si j → 0 and P/ε → 0), or buoyancy-
dominated regime; this limit can occur locally (e.g. in
the centre of channel flow) or in larger regions when

1This requires an additional assumption for one of the
model constants, otherwise (5b) also involves the production-to-
dissipation ratio of Kθ . See Lazeroms et al. (2013, 2015).
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convection effects are strong and the mean gradients
are small due to mixing.

In the first limit, one obtains the case studied indepen-
dently by Girimaji (1996) and Wallin & Johansson (2000),
in which the equation for N is a third-order polynomial.
This equation can be solved exactly, and the solution, here
called N(S), is given in the aforementioned papers. It turns
out that the second limit of zero shear also gives a (differ-
ent) third-order polynomial equation, which can be solved
in a similar way (Lazeroms et al., 2015). We shall call the
exact solution of this equation N(B). Since this method es-
sentially models P/ε and G /ε separately, we can write (cf.
the definition of N in equation (5a)):

N(0) = N(S)+N(B)− c1 +1 (6)

as our first approximation. The advantage of this method
is that one automatically obtains the correct behaviour in
the two aforementioned limits. Furthermore, it turns out
that N(0) can also be used in regions where both shear and
buoyancy are important as long as the stratification is unsta-
ble (i.e. ΓkΘk > 0).

However, when the stratification is stable (i.e. ΓkΘk <
0), additional corrections are needed. As shown in the next
section, it turns out that the exact solution N(S) significantly
overpredicts the shear production the case of stable strat-
ification. Therefore, a correction to this term is derived
by incorporating some of the neglected buoyancy terms in
the exact equation, which in the case of stable stratification
should counteract the shear production. The details of this
correction are given in Lazeroms et al. (2015); the corrected
expression will be called Ñ(S) and subsequently, we have:

Ñ(0) = Ñ(S)+N(B)− c1 +1 (7)

The approximation can be improved by using a one-step
iteration, i.e. by inserting (7) into the right-hand side of
(5a) in order to get the next approximation. Therefore, our
final expression for N, combining the shear-dominated and
buoyancy-dominated regimes both for stably and unstably
stratified flows, is expressed as follows:

N =

{
N(0), ΓΓΓ·ΘΘΘ > 0 (unstable/neutral)
f (Ñ(0)), ΓΓΓ·ΘΘΘ < 0 (stable)

(8)

where f represents the right-hand side of (5a).

NUMERICAL EVALUATION: CHANNEL FLOW
The method for approximating the solution for N given

by (8) has been investigated numerically in a number of test
cases. These tests focus on the comparison of the obtained
values for N with the production-to-dissipation ratio follow-
ing from the full model, i.e.:

P +G

ε
=−akmSkm−Γkξk (9)

Note that the value of N− c1 + 1 will only be identical to
(P +G )/ε if we have the exact solution for N. Since we

only have an approximation for N, the two values will in
principle be different. In order to have an approximately
self-consistent model, we require that the values for N −
c1 +1 and (P +G )/ε be close to each other.

The model has been evaluated in the case of turbulent
channel flow, both with stable and unstable stratification,
i.e. an infinite horizontal channel containing a tempera-
ture difference ∆T = Tup−Tdown between the two walls, in
which the flow is forced by a constant streamwise pressure
gradient. The flow is determined by the friction Reynolds
number, Reτ ≡ uτ h/ν , the friction Richardson number
Riτ ≡ βT g∆T h/u2

τ , and the Prandtl number Pr ≡ ν/κ ,
where uτ is the friction velocity, h the channel half-height, ν
the kinematic viscosity and κ the molecular heat diffusivity.
The calculations were performed using a K−ω−Kθ -model
(including near-wall corrections) on a collocated grid of 201
grid point along one half of the channel. The stratification
depends on the sign of Riτ (i.e. the sign of ∆T ). Nine cases
were studied: the neutral case (Riτ = 0), three stably strat-
ified cases (Riτ = 120, 480, 960), and four unstably strat-
ified or convective cases (Riτ = −25, −50, −100, −200).
Figure 1 shows the results of the calculations for the mean
velocity profile, in which the effects of the stratification can
clearly be seen. The stably stratified cases show an increase
of velocity in the centre of the channel due to the damping
effect of turbulent motions, while the unstable cases show a
decrease of the velocity due to increasing turbulent mixing.
Note that the model yields a particularly good agreement
with DNS data in the stably stratified cases. More details
can be found in Lazeroms et al. (2013, 2015).

As mentioned, we are mainly interested in the outcome
of the formulation for N given by (8). Figure 2 shows a
comparison of N, Ñ(0), N(S), and N(B) with the value of
(P + G )/ε following from the explicit algebraic model
for a selection of values for Riτ . In the neutral case (Fig-
ure 2(a)), the formulation for N is identical to the exact solu-
tion N(S) for the shear-dominated regime, meaning that the
curves for N− c1 +1 and (P +G )/ε are exactly the same.
In both the stably and the unstably stratified cases (Fig-
ures 2(b)-(d)), we see that the approximation given by (8)
gives values that are very close to the curve of (P +G )/ε .
We conclude that the new formulation yields a model that is
very close to being self-consistent, except very close to the
wall (y = 0) where the near-wall corrections are active.

It is interesting to consider the behaviour of the two so-
lutions N(S) and N(B), since they are exact in their respective
limits. In the stably stratified case (Figure 2(b)), N(B) gives
a relatively small, negative contribution to the production-
to-dissipation ratio, corresponding to a negative buoyancy
term in the K-equation that damps turbulence. However,
we see that N(S) significantly overpredicts the shear produc-
tion, as mentioned in the previous section. This is the reason
why we used the corrected version Ñ(0) from equation (7)
(the blue dashed line in Figure 2(b)). To further improve
the approximation, the one-step iteration explained in the
previous section is needed.

On the other hand, Figures 2(c)-(d) show that N(B) has
a large positive contribution to the production of turbulence
in the unstably stratified cases. The buoyancy-dominated
regime is reached in a significant portion of the channel
around y = h. In this region where N(B) is significant, the
contribution of N(S) is nearly zero. However, the roles of
N(S) and N(B) are reversed towards the wall (y = 0), where
the shear becomes much more important. The fact that the
shear- and buoyancy-dominated regimes switch places in a
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Figure 1. Profiles of mean velocity U+ =U/uτ in turbulent channel flow for Reτ = 550, Pr = 0.7 and different values of Riτ :
(a) stable stratification, the model (dashed) is compared with DNS (solid) by Garcı́a-Villalba & del Álamo (2011); (b) unstable
stratification. The arrows point in the direction of increasing |Riτ |.

relatively simple way is the main reason for using the sim-
ple addition given by (6) for convective flows.

In Lazeroms et al. (2015), we also discuss the inter-
esting test case of an idealized diurnal cycle in the atmo-
spheric boundary layer. The flow is forced by a constant
outer velocity and the buoyancy effects are determined by
a sinusoidal surface temperature, which creates a periodic
alternation between stable and unstable stratification. Even
in this non-stationary case containing rather complex bal-
ances between shear and buoyancy, the formulation for N is
shown to give nearly self-consistent results.

CONCLUSION
The method described here provides an approximately

self-consistent formulation of the factor N corresponding to
the total production-to-dissipation ratio of turbulent kinetic
energy. This result is important for having a correct asymp-
totic behaviour for large strain rates, and it contributes
greatly to the robustness and practicality of the model. The
method yields a fully explicit algebraic turbulence model
for which no additional numerical iterations are required.
Furthermore, the formulation is directly derived from the
equations and does not contain any additional empirical
assumptions, such as the ones considered in earlier work
(Lazeroms et al., 2013). Even though the current investiga-
tions only addressed parallel flows, we presented a system-
atic approach that might inspire similar derivations for more
complex flow cases. Nevertheless, the model gives very
satisfying results for parallel flows with buoyancy, which
already makes it useful for a wide range of applications, in-
cluding parametrizations of turbulence in the atmospheric
boundary layer.
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Figure 2. Comparison of (P +G )/ε resulting from the explicit algebraic model with N− c1 +1 from equation (8) and other
approximation levels, in turbulent channel flow with Reτ = 550, Pr = 0.7 and (a) Riτ = 0, (b) Riτ = 480, (c) Riτ = −50, (d)
Riτ =−200. Also shown are (circles) DNS by Garcı́a-Villalba & del Álamo (2011) for the neutral and stable case.
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