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ABSTRACT
Recently it has become increasingly clear that the role

of a numerical dissipation, originating from the discretiza-
tion of governing equations of fluid dynamics, rarely can
be ignored while using explicit or implicit Large Eddy Sim-
ulations (LES). The numerical dissipation inhibits the pre-
dictive capabilities of LES whenever it is of the same order
of magnitude or larger than the subgrid-scale (SGS) dissi-
pation. The need to estimate the numerical dissipation is
most pressing for low order methods employed by commer-
cial CFD codes. Following the recent work of Schranner
et al. (2015) the equations and procedure for estimating the
numerical dissipation rate and the numerical viscosity in a
commercial code will be presented. The method allows to
compute the numerical dissipation rate and numerical vis-
cosity in the physical space for arbitrary sub-domains in
a self-consistent way, using only information provided by
the code in question. It is the first time this analysis has
been applied to low-order incompressible and compressible
solvers. The procedure is tested for a three-dimensional
Taylor-Green vortex flow and compared with benchmark
results obtained using an accurate, incompressible spectral
solver.

INTRODUCTION
Direct Numerical Simulations (DNS) of turbulent

flows are excessively computationally expensive for com-
plex geometries and/or high Reynolds number flows due to
the wide separation of physical scales that need to be re-
solved. A relatively successful way to reproduce the dy-
namics of Navier-Stokes (N-S) equations while reducing
the number of degrees of freedom is the Large Eddy Sim-
ulations (LES) approach. In LES the number of degrees
of freedom is reduced by means of a spatial filter that sup-
presses the effects of small scales at the cost of introduc-
ing subgrid scale (SGS) unknowns (i.e. for the incompress-
ible N-S the SGS stress tensor) which must be explicitly
modeled (Pope, 2000; Sagaut, 2006; Garnier et al., 2009).
An alternative approach is to use the numerical dissipation
coming from the discretization of the N-S equations as an
implicit LES (ILES) model. The strategy of using the trun-
cation error as implicit model dubbed monotonically inte-
grated LES (MILES) originated with the idea of Boris et al.
(1992) and is reviewed by Grinstein et al. (2007). MILES
approach has been controversial and as such it has been
subject of rigorous investigations (Garnier et al., 1999; Do-

maradzki et al., 2003). These studies have not been partic-
ularly encouraging. Even when MILES appears to repro-
duce qualitatively the dynamics of N-S equations a more in
depth, quantitative investigation has shown that this is not
the case. Broadly speaking in these studies have been pre-
sented two scenarios. The first one (Garnier et al., 1999)
is that the numerical dissipation is excessive with respect
to the correct SGS dissipation leading to poor results both
in ILES and explicit LES (ELES) configuration. The other
option is that the scheme is under-dissipative (with respect
to the correct SGS dissipation) leading to good results for
short time integrations and poor results for long time inte-
grations due to accumulation of energy in the high wave
numbers (Domaradzki et al., 2003). The latter case can
potentially be adjusted either by filtering or with the ad-
dition of an explicit SGS model. Both situations shows a
fundamental deficiency of the MILES approach: there is
no mechanisms embedded in the numerics to ensure cor-
rect amount of SGS dissipation. This observation, that can
appear crudely obvious, suggested that rather than calling
this approach ILES it should be called under-resolved DNS
(UDNS) furthermore the term ILES should be reserved for
schemes that are designed in such a way that the discretiza-
tion error provides the correct amount of SGS dissipation.
An example of such schemes is the adaptive local decon-
volution method (ALDM) of Hickel et al. (2006). In the
ALDM the discretization is based on a solution-adaptive de-
convolution operator which allows to control the truncation
error so that the numerical viscosity can match the theo-
retical values for isotropic turbulence. Early ELES stud-
ies pointed out that low-order models are not suitable in
the ELES framework as the interaction between numerical
dissipation and the SGS dissipation (Kravchenko & Moin,
1997) would negatively affect the results, while for high-
order/spectral methods the leading source of error is alias-
ing of the non-linear term. Recently it has been shown that
at very coarse resolutions even formally high-order methods
can suffer from the interaction between numerical dissipa-
tion and SGS dissipation making the addition of an ELES
model detrimental to the performance of the code (Cadieux
et al., 2014). On the other hand UDNS simulations (of-
ten improperly called ILES) are becoming more and more
popular. The reason for this trend and the attractiveness of
the approach are due to several reasons: its simplicity, the
lack of a universal explicit SGS model and a qualitative be-
havior that mimics the dynamics of N-S equations. Fur-
thermore UDNS simulation often are validated with experi-
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mental results which suffer from high degree of uncertainty.
Recently the need of quantifying the numerical dissipation
has been addressed by Schranner et al. (2015) who devel-
oped a new methodology that allows the quantification of
numerical dissipation in a self consistent way, using only
information provided by the code analyzed. Through the
quantification of numerical dissipation, the tool proposed
by Schranner et al. (2015) is a rigorous method to judge a
posteriori the quality of a given simulation allowing for an
impartial assessment of the impact of the numerical dissipa-
tion. Here we apply this methodology for the first time to a
low-order incompressible and compressible solver, validat-
ing the method with the goal to extend it to more realistic
configurations.

EQUATIONS AND METHOD
Analytical Form

Transport energy equation for compressible Navier-
Stokes (N-S) is

∂ρe
∂ t

+
∂

∂x j

[
(ρe+ p)u j

]
=

∂uiτi j

∂x j
− ∂q j

∂x j
, (1)

where ui are the components of the velocity vector, p the
pressure, ρ the density and e the total energy per unit mass.
The constitutive relation between stress and strain rate for a
Newtonian fluid is

τi j = µ
[(

∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
∂uk

∂xk
δi j

]
, (2)

the heat flux qi is defined as

qi =−k
∂T
∂xi

, (3)

where µ is the dynamic viscosity, k is the thermal conduc-
tivity, and T is the temperature. The definition of total en-
ergy is

e = ein + ekin, (4)

where ein is the specific energy per unit mass and ekin =
1
2 uiui the kinetic energy. Following the procedure of
Schranner et al. (2015) the transport equation, Eq. (1), can
be separated into the contribution of internal energy

∂ρein

∂ t
+

∂ρeinu j

∂x j
=−p

∂u j

∂x j
+ τi j

∂ui

∂x j
− ∂q j

∂x j
, (5)

and kinetic energy

∂ρekin

∂ t
+

∂ρekinu j

∂x j
=−u j

∂ p
∂x j

+ui
∂τi j

∂x j
. (6)

After some manipulations the integral form of Eq. (6) can
be written as

∂
∂ t

∫

V

ρekindV +
∫

A

(
ρekinu j +u j p−uiτi j

)
n jdA

+
∫

V

(
−p

∂u j

∂x j
+ τi j

∂ui

∂x j

)
dV =

∂
∂ t

Ekin +Fkin +Fac −Fvis −W p + εvis = 0, (7)

where Fkin, Fac, Fvis are the kinetic energy, acoustic and
viscous fluxes, n j the outward unit vector normal to the sur-
face A, W p the work due to pressure and εvis the viscous
dissipation. Notice that in the incompressible limit W p = 0
as ∂u j/∂x j = 0.

We can define a dissipation function ε as

ε =
∫

V

1
ν

τi j
∂ui

∂x j
dV, (8)

therefore εν = εvis, where ν is the kinematic viscosity ( ν =
µ/ρ ). Note that the above equation is exact only if ν =
const in V .

Discretized Form
If we assume a FV spatial discretization and generic

discretization in time then the Eq. (7) is contaminated by
the truncation and aliasing errors so we can define a local
residual

−εn
(m) =

∆Ekin
(m)

∆t
+Fkin

(m)+Fac
(m)−Fvis

(m)−W p
(m)

+ εvis
(m), (9)

where the subscript [ ](m) refers to the mth control volume.
We call the residual εn numerical dissipation rate because it
has been shown that if integrated over a sufficiently large
control volume it has a predominantly dissipative charac-
ter (Schranner et al., 2015; Domaradzki & Radhakrishnan,
2005). Following this definition we can recover the numer-
ical kinematic viscosity as

νn
(m) =

εn
(m)

ε(m)
. (10)

We can extend the above definitions to a sub-domain or to
the entire computational domain

εn
sub =

M

∑
m

εn
(m) ; νn

sub =
εn

sub
εsub

, (11)

where M is total number of adjacent cells of a given sub-
domain.

PROCEDURE
This is a posteriori procedure, all quantities come from

the computed flow field. For the time discretization a
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second-order three-points finite difference formula is used.
Kinetic fluxes are calculated as follow

Fkin
(m) =

(
∑
r
(ρekinu jn j)(r)∆A(r)

)

(m)

, (12)

where subscript [ ](r) represents the sum over the rth face
of the mth control volume and ∆A(r) is the area of the rth
face. The other fluxes are computed in similar fashion. Vol-
ume terms are calculated as (for example the kinetic energy)

Ekin
(m) =

(
1
2

ρuiui

)

(m)

∆V(m), (13)

where ∆V(m) is the volume of the mth control volume. In
the infinite Re number limit the viscous terms in Eq. (9) are
dropped. In the incompressible limit (Ma < 0.3) the work
due to pressure should be zero, this is not the case if the
flow field is not divergence free (as it can happen with low-
order incompressible schemes). Also note that if we take a
periodic box the contribution of flux terms cancels out.

NUMERICAL METHOD
Star-CCM+ solves either the incompressible or com-

pressible three-dimensional integral Navier-Stokes equa-
tions in conservative form. The equations are solved in a
preconditioned dimensional form on an unstructured grid
(CD-Adapco, 2013). The time is advanced through a dual
time-stepping implicit scheme. The incompressible solver
uses a Rhie-Chow pressure-velocity coupling and a SIM-
PLE algorithm, while the for the compressible solver the
inviscid fluxes are evaluated by using the Weiss-Smith pre-
conditioned Roe’s flux-difference splitting scheme. Both
schemes are formally at best second order accurate. The
viscous fluxes are evaluated by a standard central difference
scheme.

VALIDATION
This is the same case which was analyzed previously to

validate the procedure applied to a research code INCA that
implements the ALDM method as an implicit LES model
(Schranner et al., 2015; Hickel et al., 2006). The Taylor
Green Vortex (TGV) problem is originally described in Tay-
lor & Green (1937). The initial conditions, following (Shu
et al., 2005), are

u = u0 [sin(x)cos(y)cos(z)] , (14)

v =−u0 [cos(x)sin(y)cos(z)] , (15)

w = 0, (16)

ρ = ρ0, (17)

p = p0 +
ρ0

16
[(cos(2x)+ cos(2y))(cos(2z)+2)−2] ,

(18)

where subscript [ ]0 indicates reference quantities. The
initial flow field is let to evolve for 10 non-dimensional
time units. The time unit is T = l0/u0 where l0 = 1 is
the reference length. The time step is kept constant as
∆t = T/50. Star-CCM+ solves the dimensional form of
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Figure 1. Time-evolution of numerical dissipation rate
εn

tot , Re = ∞. Star-CCM+ with 643 cells (blue line), Star-
CCM+ with 1283 cells (red dashed line) and INCA from
Schranner et al. (2015) (black circles).

the N-S. Under ideal gas assumption, to obtain the same
initial condition as in Schranner et al. (2015) and Hickel
et al. (2006) we need to pick the following reference values:
u0 =Ma

√
γ p0/ρ0 and ρ0 = p0/(R T0). The reference pres-

sure is p0 = 101325 Pa, the Mach number Ma = 0.0845, the
heat capacity ratio γ = 1.4, the reference temperature T0 =
300 K and the specific gas constant R = 287.02 J/(kg K).
Even though the code solves the dimensional N-S equa-
tions, all results will be presented in non-dimensional form.
Unless stated otherwise the resolution for all simulations is
of 64 cells per spatial direction for a cube with sides that
are 2π long and that has periodic boundary conditions. Ini-
tially all simulations are run with the incompressible solver
for a direct comparison with the work of Schranner et al.
(2015), afterwards selected cases are run with the compress-
ible solver.

Full periodic domain
For the first test case we use as a control volume the

whole domain so that we can calculate the total numerical
dissipation rate without flux terms. For Re = ∞ we show
εn

tot plotted against time in Fig. 1. The numerical dissipa-
tion rate is quite high, it is around three times as much as
in Schranner et al. (2015) throughout the temporal domain.
To make sure that the εn

tot is calculated properly this case
has been repeated with 128 cells per spatial direction. This
case can also be seen in Fig. 1. We can observe that for
the laminar part of the simulation ( t < 3.5 ) there is indeed
fairly good agreement with the reference results. Enstrophy
(Ω = 1/2

∫
V ωiωidV , where ωi are the component of the

vorticity vector) is often used in TGV simulations as a met-
ric to judge the degree of resolution. It is hypothesized that
for the inviscid TGV problem enstrophy should increase to
infinity at the non-dimensional time t ≈ 5 (Shu et al., 2005).
The resolution of this singularity is a common metric to
evaluate a given scheme/resolution for a TGV simulation.
In Fig. 2 we can see that for our current simulation we fall
in between the behavior of a spectral scheme, which has
very little numerical dissipation and a fifth-order WENO
scheme which has substantial numerical dissipation, with
Star-CCM+ closer to the latter. This is expected since the
current scheme is formally at best second order, therefore
quite dissipative. The result for the 1283 case is also in-
cluded. While this is not a fair comparison neither with the
spectral nor the WENO schemes used with the 643 resolu-

3



0 1 2 3 4 5 6 7

2

4

6

8

10

12

14

16

18

20

t

Ω
/
Ω
(0
)

 

 

64
128
WENO
spectral

Figure 2. Time-evolution of normalized enstrophy
Ω(t)/Ω(0), Re = ∞. Star-CCM+ with 643 cells (blue line),
with 1283 cells (red dashed line), WENO (black squares)
and spectral (black circles) from Shu et al. (2005).
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Figure 3. Time-evolution of numerical dissipation rate
εn

tot , Re = 3000. Star-CCM+ (blue line) and INCA from
Schranner et al. (2015) (black circles).

tion, it is still a useful way to show that the numerical dis-
sipation of the current scheme approaches the spectral nu-
merical dissipation when the resolution increases. For the
same configuration, as in the reference paper, a sweep of
Reynolds number has been ran (Re = ∞, 3000, 1600, 800,
400, 200, and 100). We can see εn

tot plotted against time in
Figures 3 − 4 for two of those cases. The general trend is
the same as in the infinite Reynolds number case, and the
peak is about 2.5 times the peak in the reference study. In
Fig. 5 we show a full sweep of Reynolds numbers to better
appreciate the behavior of the numerical dissipation rate as
a function of the Reynolds number.

Sub-domains
As test cases we choose some of the sub-domains used

in Schranner et al. (2015). The first cubic sub-domain used
in the reference was an octant of the domain. Due to sym-
metries of the TGV problem this case is only useful to check
that all fluxes cancel out. The second test case simulated is
the cubic sub-domain one (CSD1) which consists of cells 10
through 56 in all spatial directions. The results for the in-
finite Reynolds number case are shown in Fig. 6. Here and
in the following Figures terms of the kinetic energy balance
are plotted with a negative sign in order to sum up to εn.
All the current results are plotted against the results from
the reference paper and also plotted are the various terms
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Figure 4. Time-evolution of numerical dissipation rate
εn

tot , Re = 100. Star-CCM+ (blue line) and INCA from
Schranner et al. (2015) (black circles).
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Figure 5. Time-evolution of numerical dissipation rate
εn

tot . Re = ∞ (blue line), Re = 3000 (red dashed line),
Re= 1600 (black dash-dotted line), Re= 800 (magenta dot-
ted line), Re = 400 (solid blue line with markers), Re = 200
(red dashed line with markers), and Re = 100 (black dash-
dotted line with markers) .

that contribute to the numerical dissipation rate. We can
see that we recover the same trend observed in the infinite
Reynolds number case with the full periodic box, i.e. for
the laminar part of the simulation the results agree with the
spectral reference while the peak in the turbulent part of the
simulation is about 3 times as high. In Fig. 6 we can see a
noisy oscillatory behavior in the acoustic flux term and the
work due to pressure. These oscillations are out of phase
and cancel each other out. We speculate that this is an un-
physical energy exchange between the two terms due to the
fact that incompressibility is not strictly enforced. For the
finite Re cases we see the same trend observed for the peri-
odic box cases. A sweep of Re has been performed, here we
report only two cases: Re = 3000,100 (see Figures 7−8).
To better visualize the additional dissipation provided by
the scheme with respect to the physical dissipation we have
plotted the molecular viscosity ν together with the total ef-
fective viscosity ν +νn, i.e. a sum of the numerical and the
physical viscosity, for the Re = 3000 case (see Fig. 9).

The only non-cubic sub-domain considered here is the
NCSD2 from reference Schranner et al. (2015), i.e. for the
x-direction cells 8 to 23 and for the y and z-direction cells
1 to 31. This sub-domain is not chosen randomly, it was
selected because this is the region within the octant with
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Figure 6. Time-evolution of numerical dissipation rate
εn

sub, Re=∞, sub-volume CSD1. Numerical dissipation rate
εn

sub (blue line), rate of change of kinetic energy −∆Ekin
sub/∆t

(black dot-dashed line), kinetic energy flux −Fkin
sub (blue dot-

dashed line with markers), acoustic flux −Fac
sub (magenta

dotted line) and INCA from Schranner et al. (2015) (black
circles).
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Figure 7. Time-evolution of numerical dissipation rate
εn

sub, Re = 3000, sub-volume CSD1. Numerical dissipa-
tion rate εn

sub (blue line), rate of change of kinetic en-
ergy −∆Ekin

sub/∆t (black dot-dashed line), kinetic energy flux
−Fkin

sub (blue dot-dashed line with markers), acoustic flux
−Fac

sub (magenta solid line with markers), viscous flux Fvis
sub

(black dashed line with markers) viscous dissipation rate
−εvis

sub (red dashed line) and INCA from Schranner et al.
(2015) (black circles).

non-negligible numerical dissipation within an octant. The
results for the subdomain NCSD2 are shown in Fig. 10.

Surface versus Volume Integrals
For certain incompressible solvers pressure can be de-

fined up to a constant without changing the dynamics of
the flow field since only the gradient of pressure appears
directly in the momentum equations. For this reason sim-
ply adding W p

sub to the energy balance can potentially lead
to wrong estimates of the numerical dissipation rate. One
way to check for consistency of the results is to recast the
pressure terms as Fac

(m)−W p
(m)

= pt(m) , where pt(m) is the
numerical form of the pressure transport term defined as
pt(m) =

(
u j

∂ p
∂x j

)
(m)

∆V(m). As can be seen comparing Fig-

ures 6 and 11 the two methods are equivalent. Other surface
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Figure 8. Time-evolution of numerical dissipation rate
εn

sub, Re = 100, sub-volume CSD1. Numerical dissipa-
tion rate εn

sub (blue line), rate of change of kinetic en-
ergy −∆Ekin

sub/∆t (black dot-dashed line), kinetic energy flux
−Fkin

sub (blue dot-dashed line with markers), acoustic flux
−Fac

sub (magenta solid line with markers), viscous flux Fvis
sub

(black dashed line with markers) viscous dissipation rate
−εvis

sub (red dashed line) and INCA from Schranner et al.
(2015) (black circles).
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Figure 9. Time-evolution of physical and numerical vis-
cosity, Re = 3000, sub-volume CSD1. Total viscosity
ν +νn (blue line), physical viscosity ν (red dashed line).
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Figure 10. Time-evolution of numerical dissipation rate
εn

sub, Re = ∞, sub-volume NCSD2, including work due
to pressure. Numerical dissipation rate εn

sub (blue line),
rate of change of kinetic energy −∆Ekin

sub/∆t (black dot-
dashed line), kinetic energy flux −Fkin

sub (blue dot-dashed
line with markers), acoustic flux −Fac

sub (magenta solid line
with markers), W p

sub (red dashed line with markers) and
INCA from Schranner et al. (2015) (black circles).
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Figure 11. Time-evolution of numerical dissipation rate
εn

sub, Re = ∞, sub-volume CSD1 with pressure gradient
transport term. Numerical dissipation rate εn

sub (blue line),
rate of change of kinetic energy −∆Ekin

sub/∆t (black dot-
dashed line), kinetic energy flux −Fkin

sub (red dashed line),
acoustic flux −Fac

sub (magenta dotted line), −ptsub (magenta
solid line with markers) and INCA from Schranner et al.
(2015) (black circles).
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Figure 12. Time-evolution of numerical dissipation rate
εn

sub for a compressible solver, Ma = 0.0845, Re = 3000,
sub-volume CSD1. Numerical dissipation rate εn

sub (blue
line), viscous dissipation rate −εvis

sub (red dashed line) and
INCA from Schranner et al. (2015) (black circles).

terms have been calculated as volume terms with similar
conclusions; there seem to be negligible differences in cal-
culating the quantities in the kinetic energy balance as either
volume or surface integrals.

Effects of Compressibility
All simulations so far have been performed with an in-

compressible solver to have a one to one comparison with
the results available in literature. Due to convergence issues
for the compressible case the time step has been reduced to
∆t = T/500. For the CSD1 sub-domain all Reynolds num-
ber cases have been run for a complete comparison with the
incompressible simulations. Here we report only the case
for Re = 3000, see Fig. 12 where the physical and the nu-
merical dissipation rates are plotted. We find a good agree-
ment with the incompressible solver at all Reynolds num-
bers.

DISCUSSION AND CONCLUSIONS
Even lacking a direct validation through an external

spectral code as in the reference paper of Schranner et al.
(2015) the methods applied to a low-order incompressible
and compressible schemes compares well to the available
reference data and it is self consistent. It should be noted
that for low-order schemes the work due to pressure, even
though should be zero, might not be negligible. The exten-
sion to a compressible solver, at least at low Mach numbers,
is straightforward. From our results it seems to not matter
if terms in the discrete kinetic energy balance, Eq. (9), are
calculated as fluxes or as volume terms. The method seems
self consistent and robust as all our results are in qualita-
tive agreement with the results of Schranner et al. (2015).
Therefore we conclude that the method works well for low-
order schemes and that it is ready to be applied to more
realistic flow geometries.

REFERENCES
Boris, J.P., Grinstein, F.F., Oran, E.S. & Kolbe, R.L. 1992

New insights into large eddy simulation. Fluid Dyn. Res.
10, 199–228.

Cadieux, F., Domaradzki, J. A., Sayadi, T. & Bose, T. 2014
DNS and LES of laminar separation bubbles at moderate
Reynolds numbers. ASME J. Fluids Eng. 136, 061102.

CD-Adapco 2013 Star-CCM+ manual. Version 8.02.
Domaradzki, J.A. & Radhakrishnan, S. 2005 Eddy viscosi-

ties in implicit large eddy simulations of decaying high
Reynolds number turbulence with and without rotation.
Fluid Dyn. Res. 36, 385–406.

Domaradzki, J. A., Xiao, Z. & Smolarkiewicz, P. K. 2003
Effective eddy viscosities in implicit large eddy simu-
lations of turbulent flows. Phys. Fluids 15 (12), 3890–
3893.

Garnier, E., Adams, N. & Sagaut, P. 2009 Large eddy simu-
lation for compressible flows. Springer.

Garnier, E., Mossi, M., Sagaut, P., Comte, P. & Deville, M.
1999 On the use of shock-capturing schemes for large-
eddy simulation. J. Comp. Phys. 153 (2), 273–311.

Grinstein, F., Margolin, L. & Rider, W. 2007 Implicit Large
Eddy Simulation: Computing Turbulent Flow. Cam-
bridge University Press.

Hickel, S., Adams, N.A. & Domaradzki, J.A. 2006 An
adaptive local deconvolution method for implicit LES.
J. Comp. Phys. 213, 413–436.

Kravchenko, A.G. & Moin, P. 1997 On the effect of numer-
ical errors in large eddy simulations of turbulent flows. J.
Comp. Phys. 131 (2), 310–322.

Pope, S. B. 2000 Turbulent flows. Cambridge University
Press.

Sagaut, P. 2006 Large eddy simulation for incompressible
flows: an introduction, 3rd edn. Springer.

Schranner, F.S., Domaradzki, J.A., Hickel, S. & Adams,
N.A. 2015 Assessing the numerical dissipation rate and
viscosity in numerical simulations of fluid flows. Comp.
& Fluids 114, 84–97.

Shu, C.-W., Don, W.-S., Gottlieb, D., Schilling, O. & Jame-
son, L. 2005 Numerical convergence study of nearly in-
compressible, inviscid TaylorGreen vortex flow. J. Sci.
Comp. 24 (1).

Taylor, G.I. & Green, A.E. 1937 Mechanism of the produc-
tion of small eddies from large ones. Proc. R. Soc. Lond.
A 158 (895), 499–521.

6


