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ABSTRACT
Direct numerical simulations are performed in turbu-

lent channel flows with opposition control at Reτ = 180
and 1000. The reason for the reduction of control effec-
tiveness at higher Reynolds number is investigated. In the
outer layer, the control imposed on the wall can reduce the
Reynolds stresses at the same rate as the drag reduction,
while the distribution of the energy at different scales is lit-
tle different from the uncontrolled case. In the near-wall re-
gion at Reτ = 1000, suppression of the near-wall structures
under the large-scale high-speed streaks by the control are
much weaker than those under the region of the large-scale
low-speed streaks, which leads to the falloff of the effec-
tiveness of the control in suppressing the near-wall turbu-
lence at high Reynolds numbers. By further analyzing the
drag reduction rates, it is found that the effectiveness of the
control is mainly determined by the suppression degree of
the near-wall motions which is influenced by the large-scale
motions.

INTRODUCTION
Active control of wall turbulence for skin-friction re-

duction is of great potential significance in industry appli-
cations. In the past two decades, quite a few active control
schemes have been developed and achieved successful drag
reduction in wall-bounded turbulent flows, most of which
are at low Reynolds numbers (Reτ ∼ 102). In fact, however,
the practical turbulent flows posses the Reynolds number-
s that usually can be higher than Reτ ∼ 105. Therefore,
whether the existing active control schemes are still effec-
tive and how the control strategies should be constructed at
high Reynolds numbers must be considered.

Theoretically, the turbulent high skin friction result-
s from the weighted integral of the Reynolds shear stress
(Fukagata et al., 2002). At low Reynolds numbers, the
production of the Reynolds shear stress is dominated by
the near-wall quasi-cyclic self-sustaining process (Panton,
2001). Therefore, interrupting any procedures of this near-
wall process could possibly results in turbulence suppres-
sion and skin-friction reduction. Aiming at reducing the
sweeping motion induced by the streamwise vortices, Choi
et al. (1994) firstly proposed the so-called opposition con-
trol scheme. The direct numerical simulation (DNS) of a
turbulent channel at Reτ = 180 confirmed the success of
the control. The maximum drag reduction rate of 25%

was obtained at y+
d = 15 accompanying with the greatly

weakened streamwise vortices. Another successful exam-
ple is the control by spanwise wall oscillation (Jung et al.,
1992). As high as 40% drag reduction was attained, and the
mechanism was attributed to distorting the spatial relation
between streamwise vortices and low-/high-speed streaks
by the Stokes layer formed just above the oscillating sur-
face (Choi et al., 2002). However, these control schemes
based on the near-wall physics become less effective in re-
ducing the skin-friction drag at higher Reynolds numbers.
In the case of opposition control, Chang et al. (2002) per-
formed large-eddy simulations to turbulent channel flows at
Reτ = 80 − 720 and found that the maximum drag reduc-
tion dropped from 26% at Reτ = 100 to 19% at Reτ = 720.
Iwamoto et al. (2002) also reported that the effectiveness of
the opposition control with y+

d = 10 was decreased with in-
creasing the Reynolds number from Reτ = 110 − 300. For
the control by spanwise wall oscillation, the maximum drag
reduction rates also decrease as the Reynolds number in-
creases, from 38% at Reτ = 200 to 29% at Reτ = 1000
(Touber & Leschziner, 2012). Notably, the majority of
the previous studies were at the Reynolds numbers lower
than Reτ = 103. Only very recently, the turbulent chan-
nel flows with the wall undergoing spanwise oscillating and
streamwise travelling wave motions were directly simulat-
ed at Reτ = 1000 and 1600, respectively, by Agostini et al.
(2014) and Hurst et al. (2014). They also reported the drag
reduction decrease as the Reynolds number increase. The
observed reduction in the control efficiency as the Reynolds
number is increased was proposed to be related to the large-
scale outer-layer structures by Touber & Leschziner (2012).

The appearance of the large-scale motions residing
in and above the logarithmic region is a symbolic feature
of high-Reynolds-number wall turbulence, and has drawn
great attention in recent years (Marusic et al., 2010b; S-
mits et al., 2011). The archetypal large-scale motions are
the packets of hairpin vortices that can extend several outer
length scales (δ , representing channel half width, boundary
layer thickness or pipe radius) in the streamwise direction
and the associated low momentum region that can be longer
than 10δ (large-scale low-speed streaks). The spanwise s-
pacing of the large-scale low-speed streaks is proportional
to the distance from the wall until it grows to λz = O(δ ).
Large-scale motions make significant contribution not only
to turbulent kinetic energy but also to Reynolds shear stress
and their energetic importance would further increase with
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the Reynolds number (Hutchins & Marusic, 2007). Besides
this, these large-scale motions also significantly affect the
near-wall turbulence behaviors through superposition and
modulation (Hutchins & Marusic, 2007; Mathis et al., 2009;
Marusic et al., 2010a). Touber & Leschziner (2012) point-
ed out that an important implication of these ”top-down”
mechanisms is that a wall-based control strategy directed at
suppressing near-wall turbulence may be less effective as
the Reynolds number increases.

According to the FIK identity (Fukagata et al., 2002),
the contribution from Reynolds shear stress in the outer re-
gion to the skin friction would overwhelm that from the
viscous inner region (y+ < 50) at high Reynolds numbers.
Therefore it is natural to raise the question that whether the
near-wall region should still be the focus of the drag reduc-
tion control of high-Reynolds-number turbulent flows. The
objective of the present work is to further clarify and quan-
tify the contributions to the drag reduction from the inner
and outer regions, why the near-wall turbulence at higher
Reynolds number couldn’t be damped as much as that at
lower Reynolds number and what role the outer-layer large-
scale structures play therein. To this end, the direct numer-
ical simulations are performed to the opposition-controlled
turbulent channel flows at Reτ = 1000 in a domain spanning
8πh and 3πh in the streamwise and spanwise directions, re-
spectively, where h is the channel half width. The flows at
Reτ = 180 in a similar large domain are also simulated for
comparison.

NUMERICAL METHOD AND COMPUTATION-
AL SETTING

In the present work, turbulent channel flow governed
by the Navier-Stokes equations for incompressible New-
tonian fluids are simulated by Fourier-Chebyshev spectral
method. For the uncontrolled flows, the non-slip and imper-
meable conditions are used at the wall. For the controlled
flows, the wall-normal velocity at the walls is specified ac-
cording to the opposition control scheme (Choi et al., 1994),
vw(x,z, t) = −v(x,yd ,z, t). In all the simulations, the flow
rates are kept constant by adjusting the driving mean pres-
sure gradient.

In the present work, two Reynolds numbers, Reτ = 180
and 1000, are considered. The low-Reynolds-number flow
is used for comparison. For Reτ = 180, the computational
domain and the grid system are 8π ×2×4π and 288×145×
288, and for Reτ = 1000 they are 8π × 2 × 3π and 2304 ×
385×2304, respectively.

In the present study, the opposition control with y+
d ≈

13.5 is applied in the channel at both Reτ = 180 and 1000.
The drag reduction of 23.4% and 17.8% is attained at the
lower and higher Reynolds numbers, respectively. This is in
agreement with the DNS results reported in literature (Choi
et al., 1994; Chung & Talha, 2011; Pamies et al., 2007).

RESULTS AND DISCUSSION

Global Turbulence Statistics
The mean velocity profiles are shown in figure 1. The

mean flows at Reτ = 180 and 1000 are both decelerated
by the control in the region y+ < 20, and accelerated fur-
ther away from the wall, as shown in figure 1(a) because of
the same flow rates for both the controlled and uncontrolled
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Figure 1. Mean streamwise velocity profiles normalized
by (a) the uncontrolled and (b) the actual wall friction ve-
locity. In (b), the green and red dotted lines are obtained by
elevating the uncontrolled profiles at Reτ = 180 and 1000
by ∆U+ = 2.8 and 2.6, respectively.
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Figure 2. Reynolds stress profiles. (a) ⟨uu⟩+, (b)⟨vv⟩+,
(c)⟨ww⟩+ and (d)⟨uv⟩+.

flows. Scaled by the actual wall friction velocity as shown
in figure 1(b), the upshifting of the logarithmic region in the
controlled mean velocity profiles is more obvious at both
Reynolds numbers. Elevating the uncontrolled profiles at
Reτ = 180 and 1000 by ∆U+ = 2.8 and 2.6, respectively,
makes them almost collapse with the controlled profiles in
the outer region (y+ > 50). This suggests that the absolute
mean shear in the outer layer is suppressed at a degree the
same as the mean wall friction τw. Because the drag re-
duction at Reτ = 1000 is lower than that at Reτ = 180, the
suppression of the mean shear in the outer layer at the high-
er Reynolds number is also weaker than that at the lower
Reynolds number.

The Reynolds stresses for both controlled and uncon-
trolled flows at Reτ = 180 and 1000 are shown in figure 2,
which are normalized by the uncontrolled wall friction ve-
locity at the corresponding Reynolds numbers to reveal the
control effects. Near the wall, a local minimum appears in
⟨vv⟩+ and ⟨uv⟩+ around y+ = 7 at both Reynolds numbers
when the control is imposed as shown in figure 2(b) and (d),
indicating the establishment of the so-called ”virtual wall”
between the real wall and the detection location. The turbu-
lence fluctuations below the virtual wall are more active at
Reτ = 1000 than those at Reτ = 180. Above the virtual wall,
the fluctuations are globally suppressed by the control, but
the suppression at higher Reynolds number is weaker than
that at lower Reynolds number. For example, the near-wall
peak of ⟨uu⟩+ is reduced by 28% at Reτ = 1000, while at
Reτ = 180 this reduction rate is 36%. The influence of the
control to the inner and outer layer is also different. The
suppression of all the Reynolds stress components in the
outer layer is much weaker than that in the near-wall region
as can be obviously seen in figure 2.
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Figure 3. Reduction rate of the Reynolds stresses at (a)
Reτ = 180 and (b) Reτ = 1000. The thick dashed lines in-
dicate the corresponding mean drag reduction rates.

Figure 4. Pre-multiplied streamwise normalized spectra
of Reynolds stresses at Reτ = 1000. (a) kxϕ+

uu, (b) kxϕ+
vv ,

(c) kxϕ+
ww and (d) kxϕ+

uv. Flood: uncontrolled; Line: con-
trolled. Contour levels: 0.05, 0.15 and 0.25. The horizontal
white lines indicate y+ = 50.

Motions in Outer Layer
Due to the increased contributions of the outer layer to

the Reynolds stresses and hence to the control effectiveness
at higher Reynolds number, the suppression of the motions,
especially the large-scale motions, in the outer layer by the
control will be investigated first in the following.

The influence of the control on the Reynolds stress-
es at different y+ and Reτ are quantified by the reduction
rate of

⟨
uiu j

⟩
defined as uiu jR = 1 −

⟨
uiu j

⟩c
/
⟨
uiu j

⟩no,
where the superscripts ”c” and ”no” refer to the controlled
and uncontrolled flows, respectively. As shown in figure
3, at Reτ = 180 and Reτ = 1000, the reduction rates of
the Reynolds shear stress uvR in the outer layer (y+ > 50)
are both approximately equal to the mean drag reduction
rate. At Reτ = 1000, akin to uvR, the reduction rate of
the Reynolds normal stresses uuR, vvR and wwR are also
close to the drag reduction rate in the region y+ > 100 and
y < 0.6. This holds from y+ = 100 to the channel center at
Reτ = 180.

The control effects on the partition of
⟨
uiu j

⟩
among

different scales can be further elucidated by the spectra
normalized by the corresponding Reynolds stresses, denot-
ed as ϕuiu j = Euiu j /

⟨
uiu j

⟩
. The streamwise pre-multiplied

spectra of ϕuiu j above the virtual wall (y+ = 7) are shown
in figure 4 for both controlled and uncontrolled flows at
Reτ = 1000. For the four components of the Reynolds
stresses, kxϕuiu j in the controlled flow all collapse well with

Figure 5. Conditionally averaged (v,w) vector and u con-
tours at Reτ = 1000. (a) uncontrolled and (b) controlled.
Solid and dashed lines denote positive and negative con-
tours, respectively, with a contour level increment of 0.005.

those in the uncontrolled flow in the outer layer (y+ > 50).
This also stands for kzϕuiu j . Therefore, the control does’nt
change the distribution of the Reynolds stresses among dif-
ferent scales, and the Reynolds stresses are uniformly sup-
pressed at different scales in the outer layer at a rate ap-
proximately equal to the drag reduction rate according to
the above analysis.

Since the velocity fluctuations in the outer layer are e-
qually suppressed at different scales by the control, the pat-
terns of the large-scale motions wouldn’t be altered. Fig-
ures 5(a) and (b) show the conditionally averaged flow field
⟨ui(y,z) | ul < 0 at y = 0.1⟩ in the uncontrolled and con-
trolled flows, where ul is the streamwise velocity with the
spanwise scale larger than h. No matter whether the control
is imposed or not, the large-scale motion is a sweep-ejection
pairs in the y−z plane, indicating the pattern of the coherent
structures are not broken by the control, but with the weak-
ened amplitude. Additionally, in the controlled flow, these
large-scale motions can still penetrate into the near-wall re-
gion.

Motions in Near-Wall Region
The influence of the large-scale motions on the near-

wall region under the active control will be investigated via
the analysis of the superimposition and modulation effects
respectively.

Superimposition Effect Above the virtual
wall there exists a kind of similarity in the controlled and
uncontrolled flows. Deng et al. (2014) found that the con-
trolled Reynolds shear stress could be well collapsed with
the uncontrolled one by moving the coordinate origin to the
virtual wall and scaling the velocity with the characteristic
velocity at the virtual wall. Therefore a new coordinate yc is
defined as yc = y − yvw. For the uncontrolled flow y+

vw = 0,
and for the controlled flow y+

vw ≈ 7 as the detection plane is
located at y+

d ≈ 13.5 in the present study.
Figure 6 shows the two-dimensional pre-multiplied

spectra kxkzEuiu j at y+
c = 15, the near-wall peak position

of the streamwise turbulent kinetic energy, corresponding
to y+ = 15 and y+ = 22 for the uncontrolled and the con-
trolled flows, respectively. For the spectra of the attached
variables ⟨uu⟩ and ⟨ww⟩, as shown in figure 6(a) and (c), the
handles around λx = 6h and λz = h exist in both the uncon-
trolled and controlled cases, indicating that the large-scale
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Figure 6. The two-dimensional pre-multiplied spectra of
Reynolds stresses scaled by the uncontrolled friction veloc-
ity at y+

c ≈ 15. (a) kxkzEuu, (b) kxkzEvv, (c) kxkzEww and
(d) kxkzE−uv. The black and red contours refer to the un-
controlled and controlled cases at Reτ = 1000, respectively.
Contour levels: (a) 0.2, 1.0; (b) 0.01, 0.05; (c)(d) 0.03, 0.15.
The green dashed line in (a) is λx = 10λz.
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Figure 7. The pre-multiplied normalized spanwise spectra
of ⟨uu⟩ and ⟨uv⟩ at y+

c ≈ 15, corresponding to y+ ≈ 15 and
22 for the uncontrolled and controlled cases, respectively.
(a) kzEuu/⟨uu⟩no and (b) kzEuv/⟨uv⟩no.

motion can still penetrate into the near-wall region under the
control. The location of the peaks in the uncontrolled flow
is consistent with the typical spanwise scale of the near-
wall coherent structures, i.e., λ+

z ≈ 100. In the controlled
flow, the peaks are slightly moved to the larger spanwise
wavelength direction and the peak values of kxkzEuu and
kxkzEww are both suppressed. The suppression by the con-
trol is more obvious at the spanwise scales smaller than the
peak-value scale. The suppression effect on the handle that
represents the superimposition of the large-scale motions
is weaker than that on the motions with the scales of the
near-wall structures. Therefore, in the controlled flow, the
contributions to ⟨uu⟩ and ⟨ww⟩ from the smaller spanwise
scales are decreased, and those from the larger scales be-
come relatively more important. For the detached variables
⟨vv⟩ and ⟨uv⟩, no contributions come from the large-scale
motions (λz > h). The spectra shrink at the scales smaller
than the characteristic scale of the near-wall structures simi-
lar to the attached variables under the control, indicating the
control makes the energetic motions wider in the spanwise
direction.

The above analysis shows that for the attached vari-
ables, the large-scale motions in the near-wall region is not

suppressed as effectively as the near-wall structures. This
may be one of the reasons why the active control becomes
less effective in suppressing the near-wall attached fluctua-
tions at higher Reynolds number. To further elucidate this
issue, the spectra of the streamwise velocity at Reτ = 1000
are compared with those at Reτ = 180. Since the influence
of the control on the distribution of the spectrum kxkzEuu
in the spanwise direction is more conspicuous than that in
the streamwise direction as shown in figure 6, the spanwise
spectrum normalized by the uncontrolled streamwise kinet-
ic energy at y+

c = 15 at Reτ = 1000 and 180 are shown
in figure 7(a). In the uncontrolled flow, the spectrum at
Reτ = 180 reaches a peak around λ+

z = 125, which corre-
sponds to the spacing of the low-speed streaks in the near-
wall region. At Reτ = 1000, the inner-peak position co-
incides with that at Reτ = 180, but the energy contained
in the scales larger than the outer-peak scale λ+

z = 1000
(λz = h) become more significant due to the superimposi-
tion of the large-scale motions inhabiting in the logarithmic
region. Therefore, around the inner peak, the ratio of the
streamwise kinetic energy at Reτ = 180 is much larger than
that at Reτ = 1000; while around the outer-peak scale, the
ratio at the lower Reynolds number is much smaller than
that at the higher Reynolds number. At Reτ = 180 the con-
tribution from λ+

z > 1000 is less than 3%, but the ratio is
increased to 10% at Reτ = 1000. In the controlled flow, the
peaks of the spectra are moved to λ+

z ≈ 140 by the con-
trol at both Reynolds numbers with obviously suppressed
amplitudes. However, the suppression around this near-
wall streak scale at Reτ = 1000 is not as strong as that at
Reτ = 180. The reduction rate of the streamwise turbulent
energy contained in the scales of λ+

z < 1000 is about 30%
at Reτ = 1000, but about 35% at Reτ = 180. Therefore,
one reason for the less effective suppression of the attached
variables in the near-wall region at higher Reynolds num-
ber is due to the decay of the control effectiveness in the
scales of the near-wall structures. On the other hand, there
is about 10% of the streamwise kinetic energy contained in
the scales of λ+

z > 1000 at Reτ = 1000, but the suppres-
sion of the large-scale motion is far less than that at the s-
mall scales around the inner peak. The weaker suppression
of the large-scale motions than the near-wall structures fur-
ther deteriorates the suppression of ⟨uu⟩ at higher Reynolds
number.

The decay of the control effectiveness in suppressing
the near-wall structures can also be found in the detached
variables, such as the Reynolds shear stress ⟨uv⟩, in which
there is almost no contributions from the scales of λz > h
(λ+

z > 1000) in the near-wall region. The spanwise spec-
trum of ⟨uv⟩ at y+

c = 15 is shown in figure 7(b). As ex-
pected, the pre-multiplied spectrum kzEuv tends to zero at
λ+

z > 1000. Therefore, the control effect of the detached
variables is determined by the near-wall structures. The
peak of the spectrum is shifted from λ+

z ≈ 91 to λ+
z ≈ 110

by the control at these two Reynolds numbers. Consisten-
t with the spectrum shown in figure 6(d), the suppression
of the Reynolds shear stress is mainly at the scales smaller
than the peak-value scale, and the suppression at the lower
Reynolds number is much stronger than that at the higher
Reynolds number.

Modulation effect In the near-wall region, the
small-scale motions tend to be modulated by the large scales
(Hutchins & Marusic, 2007). Mathis et al. (2009) found that
near the wall the small-scale fluctuations are more intensi-
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Figure 8. Intensity of the streamwise fluctuating velocity
and vorticity in the region of ul < 0 and ul > 0 at Reτ =

1000.

fied in the large-scale high-speed regions than in the low-
speed regions. In the present work, the velocity fluctuation
is decomposed into large and small-scale components using
a spectral filter to study the modulation effect. The large-
scale component is obtained by low-pass filtering the signal
in the spanwise direction and denoted by the subscript ”l”.
The filter width is chosen to be λz = h (λ+

z = 1000).
Figure 8(a) shows the streamwise kinetic energy con-

ditionally averaged in the large-scale high-speed (ul > 0)
and low-speed (ul < 0) regions, respectively. Consisten-
t with Hutchins & Marusic (2007) and Mathis et al. (2009),
in the uncontrolled flow, the streamwise velocity fluctuation
in regions of ul > 0 is much stronger than that in regions of
ul < 0. The peak location with ul > 0 is around y+ = 13.5,
while that with ul < 0 locates further away from the wall at
y+ ≈ 15.5. When the control applies, ⟨uu⟩+ is globally sup-
pressed but the modulation effect still exists, as indicated by
the different peak values in ul > 0 and ul < 0 regions. The
peaks of ⟨uu⟩+ are pushed about 7 wall units away from the
wall by the control, a distance between the virtual wall and
the real wall, in both positive and negative ul regions of the
controlled flow.

Not only the amplitude and the location of the small-
scale streaks are modulated by the large-scale motion, the
near-wall streamwise vortices are also significantly influ-
enced. As shown in figure 8(b), in the uncontrolled flows,
the amplitude of ⟨ωxωx⟩+ with ul > 0 is obviously larger
than that with ul < 0 in the near-wall region. The loca-
tion of the interior peak with ul > 0 is around y+ = 16,
while that with ul < 0 is at y+ ≈ 20. The local minimum
positions in both cases are almost the same. These obser-
vations indicate that statistically the streamwise vortices in
the large-scale high-speed regions are stronger and smaller
with the core closer to the wall than those in the large-scale
low-speed regions. In the controlled flows, the amplitudes
of ⟨ωxωx⟩+ are both attenuated in ul > 0 and ul < 0 re-
gions. Although the local minimum positions are pushed a
little bit away from the wall in both cases, the interior max-
imum positions are drawn closer to the wall by the control.
The interior peak with ul > 0 is moved from y+ ≈ 16 to
y+ ≈ 13.5 by the control, and that with ul < 0 is changed
from y+ ≈ 20 to y+ ≈ 18.5. This indicates that the aver-
aged radius of the streamwise vortices become smaller in
both ul > 0 and ul < 0 regions under the control. The mod-
ulation effects are obviously exhibited in the amplitude of
⟨ωxωx⟩+ under the control. The suppression of ⟨ωxωx⟩+ in
the region of ul > 0 is significantly weaker than that in the
region of ul < 0. The reduction rate of the peak value of
⟨ωxωx⟩ with ul > 0 is about 14%, while that with ul < 0 is
around 30%. As a reference, the reduction rate of the peak
value of the total ⟨ωxωx⟩ is around 40% at Reτ = 180.

Since the streamwise vortices are closely related to the
generation of Reynolds shear stress in the near-wall region,

the weakened effect in attenuating the streamwise vortices
in the region ul > 0 implies that the Reynolds shear stress
in this region is not effectively suppressed. The conditional
statistics shows that the reduction rate of the Reynolds shear
stress in the region ul > 0 is much smaller than that in the
region ul < 0, indicating the less effectiveness of the control
in suppressing the near-wall structures is closely related to
the modulation effect of the large-scale motions, especially
the high-speed large-scale motion.

Contribution to Drag Reduction Rate From In-
ner and Outer Regions

In turbulent channel flow, the mean wall shear stress
can be expressed as (Fukagata et al., 2002):

τw =
3µUm

h
+3ρ

∫ 1

0
(1− y)⟨−uv⟩dy, (1)

which stands for both uncontrolled and controlled flows. In
case of the fixed flow rate, the mean drag reduction rate,
which can be written into DR = (τno

w −τc
w)/ρ(uno

τ )2, can be
obtained according to equation (1):

DR = 3
∫ 1

0
(1− y)(⟨−uv⟩no+ −⟨−uv⟩c+)dy, (2)

in which the superscript ”+” indicates the normalization
by uno

τ . Denote the integral of the Reynolds shear stress
as I =

∫ 1
0 (1 − y)⟨−uv⟩+dy, and that in the outer and in-

ner regions as Iouter =
∫ 1

yt
(1 − y)⟨−uv⟩+dy, and Iinner =∫ yt

0 (1− y)⟨−uv⟩+dy, respectively. Equation (2) can be rep-
resented by

DR = 3(Ino
inner − Ic

inner)+3(Ino
outer − Ic

outer) (3)

According to figure 3, the reduction rate of the Reynolds
shear stress in the region of y+ > 50 is almost equal to the
mean drag reduction rate. Therefore, if choosing y+

t = 50,
we can have Ic

outer = (1−DR)Ino
outer. Let IRinner denotes the

reduction rate of the integral of the Reynolds shear stress
in the inner region, i.e., IRinner = 1 − Ic

inner/Ino
inner, the drag

reduction rate can be further written into

DR = IRinner
3Ino

inner
1−3Ino

outer
= IRinnerIRin/out , (4)

where IRin/out = 3Iinner/(1 − 3Iouter) embodies the influ-
ence of the Reynolds shear stress in the outer layer. The val-
ues of IRin/out at different Reynolds numbers are computed
using the present uncontrolled data at Reτ = 180 and 1000
and the data of Hoyas & Jiménez (2006) at Reτ = 550 and
2000. It is found that IRin/out increases with the Reynolds
number, for example, IRin/out = 0.58, 0.62, 0.66 and 0.78
at Reτ = 180, 550, 1000, and 2000, respectively. Consider-
ing the drag reduction of 17.8% at Reτ = 1000 in compar-
ison with that of 23.4% at Reτ = 180, it can be concluded
that the reason for the decayed drag reduction rate at higher
Reynolds numbers is attributed to the lessened effectiveness
of the control in suppressing the near-wall coherent struc-
tures.
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Summary
In the present study, direct numerical simulations are

performed to turbulent channel flows at Reτ = 1000 with
wall blowing and suction determined by the opposition con-
trol scheme. The flows at Reτ = 180 are also simulated for
comparison. As the Reynolds number increases, the drag
reduction by the control drops from 23.4% to 17.8%.

Under the normalization by their actual wall friction
velocity, the controlled and uncontrolled mean velocity pro-
files collapse together in the outer layer by elevating the un-
controlled one a constant ∆U+, indicating that the control
reduces the mean shear in the outer layer at a rate the same
as the mean wall friction. The reduction of the Reynolds
shear stress is also identical to the mean drag reduction rate
in y+ > 50. These results hold for both higher and lower
Reynolds numbers. Furthermore, it is shown at Reτ = 1000
that the Reynolds stresses are equally suppressed by the
control at different scales, and the large-scale motions keep
the same pattern but with a reduced intensity under the ma-
nipulation of the control.

The effects of the control on the motions near the wall
weakens as the Reynolds number increases. The role the
large-scale motions play therein is investigated from the
viewpoint of ”top-down” influence mechanism. At Reτ =
1000, the large-scale contribution via superimposition to the
near-wall streamwise kinetic energy becomes larger com-
pared with that at Reτ = 180, but the suppression by the
control at large scales is weaker than that at small scales.
Furthermore, the small-scale Reynolds stresses are also less
reduced at higher Reynolds number than at lower Reynolds
number. The streamwise kinetic energy and enstrophy in
the large-scale high-speed regions are less effectively af-
fected by the control than those in the low-speed region-
s. Correspondingly the contribution to the reduction of the
Reynolds shear stress from large-scale high-speed regions
is lower than that from the low-speed regions.

To quantify the respective contributions to drag reduc-
tion from inner and outer layers, theoretical analysis is per-
formed based on the FIK identity. Considering that the re-
duction rate of the Reynolds shear stress in y+ > 50 approx-
imately equals to the mean drag reduction rate, a formu-
la is derived out and describes the direct relation between
the reduction rates of the mean friction drag and the inte-
gral of the inner-layer weighted Reynolds shear stress. It is
demonstrated that the drop in the drag reduction rate at high
Reynolds number is due to the inefficient manipulation of
the near-wall motions, which is exposed to the ”top-down”
influence of the large-scale motions in the high Reynold-
s number case. Therefore how to effectively manipulate
the near-wall structures under the influence of the large-
scale motions embedded in the outer layer is a crucial issue
for drag reduction control in high-Reynolds-number wall-
bounded turbulent flows.
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