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ABSTRACT
Two different tools, the non-empirical resolvent analy-

sis and the data-based dynamic mode decomposition, are
employed to assess the changes induced by transpiration
in the dynamics of a turbulent pipe flow. The focus is on
very large-scale motions. Both analyses permit the obser-
vation of streamwise waviness in the large flow structures
and how the transpiration can inhibit fluctuation in local-
ized axial positions. We discuss under which conditions an
agreement between both methodologies can be achieved.

INTRODUCTION
A deep understanding of the physical mechanisms that

act in wall-bounded turbulent flows is required for the de-
sign of efficient flow control strategies, as stated by Kim
(2011). In this context, recent findings in high-Reynolds
number wall-bounded turbulent flows highlight the ener-
getic relevance of coherent structures other than the self-
sustaining near-wall cycle (Kim et al., 1987; Jiménez &
Pinelli, 1999). These flow structures, known as very large-
scale motions (VLSM), were recently reported by Guala
et al. (2006) and Monty et al. (2007) and found to consist
of long meandering slender streaks of high and low stream-
wise velocity that contain a significant fraction of the tur-
bulent kinetic energy and shear stress production. Hence
the contribution of these flow structures to the overall wall
drag is of utmost importance at very high-Reynolds num-
ber. Hutchins & Marusic (2007) observed that these VLSM
can reach locations near the wall, thus flow control strate-
gies applied to the wall may have a strong influence on these
motions. Consequently, control of these VLSM structures
is highly desirable towards a drag increase or reduction in
high-Reynolds pipe flow.

Even though computational simulations are almost un-
affordable at the Reynolds number in which these structures
are energetically dominant, in the sense of producing a sec-
ond peak in the streamwise turbulent intensity, which oc-

curs for friction Reynolds number Reτ > 104 (Smits et al.,
2011), the behavior of these structures can be observed
in pipe flow experiments at moderate bulk-flow Reynolds
numbers Re = 12500, as shown by the proper orthogonal
decomposition of experimental data carried out by Hell-
ström et al. (2011).

As observed in the seminal work of Choi et al. (1994),
one of the most potentially effective ways to achieve the
manipulation of turbulent flow is the appliance of suction
and blowing at the wall, also known as transpiration. The
purpose of the present study is to observe how high- and
low-amplitude transpiration in pipe flow at a moderate bulk
flow Reynolds number Re= 10000 can affect the very large-
scale motions of the flow. Particularly, we only focus on the
effect on the flow of steady wall-normal blowing and suc-
tion, that varies sinusoidally in the streamwise direction. To
address this, a direct numerical simulation (DNS) dataset
for pipe flow at a moderate Reynolds number has been gen-
erated. This dataset consists of a wall transpiration param-
eter sweep in order to assess the effect of the transpiration
parameters on the turbulent statistics and identify interest-
ing drag increasing and reducing configurations.

Here we employ the resolvent analysis to identify
the flow structures that are amplified/damped by the ef-
fect of different transpiration configurations. The resolvent
framework (McKeon & Sharma, 2010) consists of an am-
plification analysis of the Navier–Stokes equations in the
wavenumber/frequency domain, which yields a linear re-
lationship between the velocity fields and the non-linear
terms sustaining the turbulence, and hence the mean profile
though the Reynolds shear stress, via a resolvent operator.
This framework has been already successfully employed
by Sharma & McKeon (2013) to recreate complex coher-
ent structures, VLSM among them, from a low-dimensional
subset of modes. To complement this tool, a dynamic mode
decomposition (Schmid, 2010; Rowley et al., 2009) (DMD)
analysis on the turbulent DNS data is carried out to provide
the most energetic flow structures. Gómez et al. (2014)
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Figure 1. Physical domain and transpiration boundary
condition

provided a link between amplification and energy through
the similar characteristics exhibited by the most energeti-
cally relevant flow structures, arising from a dynamic mode
decomposition of direct numerical simulation data of un-
controlled pipe flow, and the resolvent modes associated
with the most amplified sparse frequencies. In this paper,
we discuss under which conditions such agreement can be
achieved.

NUMERICAL METHODOLOGY
A spectral element-Fourier direct numerical simula-

tion (DNS) solver is employed to solve the incompressible
Navier–Stokes equations in dimensional form,

∇ · û = 0 (1)
∂ û
∂ t

+ û ·∇û = −∇p+ν∇2û+ f (2)

where ν is the constant kinematic viscosity, û = (u,v,w)
is the velocity vector expressed in cylindrical coordinates
(x,r,θ), p is the pressure, the density has been fixed to ρ = 1
and f=( fx,0,0) is a forcing vector. A sketch of the configu-
ration in shown in Figure 1, which includes the steady sinu-
soidal wall-normal flow transpiration along the streamwise
direction with an amplitude A and a streamwise wavenum-
ber kc. Note that kc must be an integer multiple of the funda-
mental wavenumber in the axial direction 2π/L to enforce a
a zero net mass flux over the pipe wall. A constant stream-
wise body force fx is added in (2) to ensure that the velocity
and pressure are streamwise periodic; this force acts as a
constant streamwise pressure gradient and hence drives the
flow through the pipe. We keep constant the body force con-
stant for all cases. As consequence of momentum balance,
the mean wall shear stress τw is also kept constant. Hence
the friction velocity uτ and the friction Reynolds number
Reτ are the same for all cases considered.

The numerical method is fully described in Blackburn
& Sherwin (2004). A similar mesh as in previous works by
Saha et al. (2015) at this same Reτ = 314 is employed. The
grid consists of 240 elements in the meridional semi-plane
with a 11th-order nodal shape functions and 320 Fourier
planes along the azimuthal spatial direction, corresponding
to a total of approximately 1.1× 107 computational nodes.
For transpiration cases in which the flow rate is significantly
increased, a finer mesh consisting of 1.6× 107 degrees of
freedom has been additionally employed. Simulations are
restarted from a snapshot of the uncontrolled pipe flow,
transient effects are discarded by inspecting the temporal
evolution of the energy of the azimuthal Fourier modes.
Typically, 50-100 wash-out times (L/Ub) are required for
convergence of the statistics.

SELECTION OF PARAMETERS
The present study deals with a broad parameter space.

Namely, the transpiration amplitude A and wavenumber
kc, and the spatial wavenumbers/frequency combination
(k,n,ω) of the flow structures subject to study.

Transpiration parameters
The transpiration amplitude A and wavenumber kc are

selected in terms of drag reducing or increasing configura-
tions. Following the classical Reynolds decomposition, the
total velocity is decomposed as the sum of the mean flow
u0 and a fluctuating velocity u, which reads

û(x,r,θ , t) = u0(x,r)+u(x,r,θ , t) , (3)

with the mean flow obtained by averaging the total flow in
time and the azimuthal direction as

u0(x,r) = lim
T→∞

1
T

∫ T

0

1
2π

∫ 2π

0
û(x,r,θ , t)dtdθ . (4)

Note that the streamwise spatial dependence of the mean
flow permits a non-zero mean in the wall normal direction,
hence u0(x,r) = (u0,v0,0). Turbulence statistics addition-
ally averaged in the streamwise direction are denoted with
a bar

ū0(r) =
1
L

∫ L

0
u0(x,r)dx . (5)

In terms of flow control efficiency, here we defined drag-
reducing or -increasing configurations as those that reduce
or increase the streamwise flow rate with respect to the
smooth pipe. Mathematically,

∆Q =

∫ R
0 ∆ū0rdr
∫ R

0 ūs
0rdr

{
< 0 drag-increasing ,
> 0 drag-reducing ,

(6)

where ∆u0 = (ūc
0− ūs

0), being c and s superscripts to denote
controlled and smooth pipe respectively. Table 1 lists the
four cases selected for this study in terms of change in drag.
Figure 2 complements Table 1 by showing instant stream-
wise velocity planar contours for the four cases considered.
These contours permit to infer how the flow structures are
modified by the transpiration in each of the cases. Note that
we consider most appropriate to represent axial velocity be-
cause of the streamwise character of the VLSMs.

Flow structures parameters
As discussed in detail by Sharma & McKeon (2013),

VLSMs can be represented with resolvent modes of lengths
scales (k,n) = (1,6) and with a convective velocity c = 2/3
of the centerline streamwise velocity. This representation
is based on the work of Monty et al. (2007) and Bailey &
Smits (2010), which experimentally investigated the span-
wise length scale associated with the VLSM and found to be
of the order of the outer length scale, n = 6. Here we focus
on the wavenumber combination (k,n,c)= (1,6,2/3). Note
that the convective velocity is non-dimensionalized with the
centerline velocity and calculated assuming k = 1. Also,
this wavenumber corresponds to the largest structure that
fits in the computational domain.
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Table 1. Transpiration cases considered in this paper

Case A kc ∆Q Re Reτ

reference - - - 10000 314

I large drag-reduction 0.314 10 0.19 11900 314

II small drag-reduction 0.022 10 0.04 10400 314

III drag-increase 0.063 2 -0.36 6400 314

Figure 2. Instant streamwise velocity planar contours for the four cases considered. (a) reference case (b) case I (c) case II
(d) case III

APPROACH
The main challenge of incorporating transpiration ef-

fects to the resolvent model are the loss of spatial homo-
geneity in the axial direction and the increase in compu-
tational costs associated with their discretization. To ad-
dress this, the resolvent framework has been extended to
two dimensions as previously done by Gómez et al. (2014)
in order to deal with this spatial non-homogeneity, hence
the dependence on the axial coordinate x is retained in the
formulation, in contrast with the classical resolvent formu-
lation of McKeon & Sharma (2010). This allows the general
analysis of flows non-homogeneous in the axial direction as
well as taking into account the finite length of the compu-
tational periodic domain employed in the DNS. A Fourier
decomposition of the fluctuating velocity leads to

u(x,r,θ , t) = ∑
n

∫

ω
un,ω (x,r)ei(nθ−ωt)dω , (7)

where n and ω/2π are the non-dimensional azimuthal
wavenumber and the temporal frequency respectively. Sim-
ilarly, the non-linear forcing terms are written as fn,ω =
(u ·∇u)n,ω . Taking this into account, it follows that the
Fourier-transformed Navier–Stokes Equation (2) yields the
linear relation

un,ω (x,r) = Hn,ω fn,ω (x,r) , (8)

for each (n,ω) combination. The resolvent operator Hn,ω
acts as a transfer function between the fluctuating veloc-
ity and the forcing of the non-linear terms, thus it pro-
vides information on which combination of frequencies and
wavenumber are damped/excited by wall transpiration ef-
fects. A singular value decomposition (SVD) of the resol-
vent operator

Hn,ω = ∑
m

ψψψn,ω,mσn,ω,mφφφ∗n,ω,m (9)

delivers an input-output amplification relation between sin-
gular response modes ψψψn,ω,m and singular forcing modes
φφφ n,ω,m through the magnitude of the corresponding sin-
gular value σn,ω,m. Each Fourier projection of the non-
linear terms can be decomposed as a sum of singular forcing
modes to relate the amplification mechanisms to the veloc-
ity fields,

fn,ω = ∑
m

χn,ω,mφφφ n,ω,m (10)

where the unknown forcing coefficients χn,ω,n represent the
non-linear forcing maintaining the turbulence. A resolvent
decomposition of the fluctuating velocity field is then con-
structed as a weighted sum of singular response modes

u(x,r,θ , t) = ∑
ω,n

χn,ω,1σn,ω,1ψψψn,ω,1ei(nθ−ωt)∆ω , (11)
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in which the low-rank nature of the resolvent, σn,ω,1 �
σn,ω,2, can be exploited to create a rank-1 model (Moarref
et al., 2013). We note here that, although the rank-1 model
has proven to be effective for canonical flows, this simplifi-
cation may not be adequate for pipe flow with transpiration.
Additionally, we remind that this modified resolvent model
provides two-dimensional modes ψψψn,ω,1(x,r) containing a
range of axial wavenumbers.

To complement the resolvent analysis, a dynamic mode
decomposition (Schmid, 2010; Rowley et al., 2009) (DMD)
analysis on the turbulent DNS data is carried out to ob-
tain the most energetic flow structures. We employ the
DMD algorithm based on the SVD of the snapshot matrix
developed by Schmid (2010) with a dataset consisting of
1200 DNS snapshots equispaced during O(40) wash-out
times. As shown by Chen et al. (2012), the results from
a DMD analysis of a statistically steady flow such as these
can be interpreted as a time Fourier analysis. This has been
confirmed through obtained values of decay/growth of the
DMD eigenvalues close to zero. Hence, the obtained DMD
modes are marginally stable, and can be considered Fourier
modes. In the next section, we employ the resolvent analy-
sis and DMD to address how the most amplified and ener-
getic flow structures are manipulated by effect of the tran-
spiration. This is the first step to establish a relation be-
tween the changes in flow structures and the drag reduction
or increase mechanisms.

RESULTS AND DISCUSSION
Figure 3 presents the most amplified and the most en-

ergetic flow structures for the four cases listed in Table
1.Figure 3(a) shows a comparison between the amplifica-
tion obtained from the resolvent analysis and the norm of
the most energetic DMD vectors and their associated fre-
quency for the reference case. As explained by Gómez et al.
(2014), a sparsity is observed in both energy and amplifica-
tion consequence of a critical layer mechanism and a finite
length periodic domain. The diagonal terms of the inverse
of the resolvent matrix in (8) for the reference pipe flow,
using Cartesian coordinates for easiness in the explanation,
read

h−1
ii = u0∂xu−∂tu+Re−1∇2u , (12)

and considering Fourier modes in the axial direction and
time, it follows that

h−1
ii = i(u0k−ω)u+Re−1∇2u , (13)

thus, irrespective of the size of the Laplacian, there is a large
amplification if the wavespeed c = ω/k matches the mean
streamwise velocity, i.e, c = u0. That means that flow struc-
tures that travel at the local mean velocity create high ampli-
fication and hence are greatly amplified. Furthermore, only
structures with an integer axial wavenumber, ki = 1,2, ...
can exist in the flow because of the finite length periodic do-
main. This fact creates energy and amplification sparsity in
frequency. Per each integer axial wavenumber ki there is a
frequency ωi for which the critical layer mechanism occurs,
i.e., ωi = kic = kiu0. This amplification and energy sparsity
behavior is clearly observed in the reference case, as shown
in Figure 3(a), in which the peak frequencies are harmonics.

We also observe that the frequencies corresponding to the
peaks of amplification and energy significantly differ. This
fact has been observed by Moarref et al. (2013) and Gómez
et al. (2015) and it is related to the major role that the non-
linear forcing maintaining the turbulence χn,ω,n plays in the
decomposition (10). Nevertheless, we observe that the fre-
quency corresponding to the most energetic structures can
be found in the proximity of the amplification peaks.

Figure 3(b) and (c) present the principal resolvent
mode ψψψ6,ω,1(x,r)e

i6θ and DMD mode corresponding to
the most energetic frequency respectively. This frequency
is highlighted by an orange arrow. We observe a striking
resemblance between the shapes of the principal resolvent
mode and the DMD mode and that they match the descrip-
tion of VLSMs. Besides a random shift in phase, both flow
structures possess the same dominant axial wavenumber
k = 1 and same location of maximum/streamwise velocity.
Again, we highlight that no streamwise axial wavenumber
is imposed, hence the axial wavenumber corresponding to
this long structure arise from the singular value decomposi-
tion of the resolvent operator.

Figure 3(d)(e)(f) present the results corresponding to
the large drag reducing case with transpiration parameters
(A,k) = (0.314,10). We observe that the distribution of am-
plification is still sparse and high frequencies are amplified
with respect to the reference case. The energy represented
by the DMD modes is also sparse and indicates that the first
frequency peak is still the most energetic one. A disagree-
ment between the principal resolvent mode ψψψ6,ω,1(x,r)e

i6θ

and DMD mode corresponding to the most energetic fre-
quency is appreciated. Although both flow structures have
the same principal axial wavenumber k = 1 modulated by
the forcing wavenumber kc = 10, the radial location of the
maximum/minimum velocity differs. The location of the
maximum/minimum of the resolvent mode is shifted to-
wards the centerline. Also note that the modulation or wavi-
ness of the flow structures can be inferred from the corre-
sponding snapshot in Figure 2(b).

We presume that additional sources of high amplifica-
tion affects the ability of the resolvent operator to represent
the flow structures with a rank-1 model. For example, the
existence of a non-zero wall-normal velocity at the critical
layer adds additional term v0∂yu to (12) and the streamwise
gradient of mean axial velocity generates a term u∂xu0. The
diagonal of the resolvent now reads

h−1
ii = u0∂xu+ v0∂yu+u∂xu0−∂tu+Re−1∇2u , (14)

hence the location of the maximum/minimum velocity can
be shifted. In addition, there are additional sources of high
gain, such as streamwise and wall-normal shears in the off-
diagonal terms. We recall that resolvent modes represent
amplification while DMD modes denote energy, i.e., forc-
ing times amplification. As a consequence, a subset of re-
solvent modes, properly weighted with their correspond-
ing forcing χn,ω , could represent the same structure of the
DMD modes.

Results in Figure 3(g)(h)(i) correspond to the small
drag reducing case with transpiration parameters (A,k) =
(0.022,10). A significant increase in the amplification of
the first peak is the major difference with respect to the ref-
erence case in Figure 3(a). Figure 3(h)(i) shows that the
shapes of the resolvent and DMD mode agree well. We
can observe a slight waviness corresponding to the forcing
wavenumber kc = 10 on both modes. We presume that, in
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Figure 3. Case III. (a)(d)(g)(j) Comparison between DMD mode norms (bars) from DNS and amplification from resolvent
(lines) in frequency at n = 6. Iso-surfaces of 1/3 of the maximum/minimum streamwise velocity of (b)(e)(h)(k) resolvent mode
and (c)(f)(i)(l) DMD mode corresponding to frequency highlighted by orange arrow. (a)(b)(c) case reference, (d)(e)(f) case I,
(g)(h)(i) case II, (j)(k)(l) case III.

this case, the additional high amplification induced by the
transpiration is small since the rank-1 model is able to rep-
resent the most energetic flow structure.

The large drag-increase results with transpiration
parameters (A,k) = (0.063,2) are presented in Figure
3(j)(k)(l). The peak corresponding to the forcing wavenum-
ber k = 2 is highly amplified with respect to the reference
case while the rest of peaks are damped. In addition, the
DMD norms do not show a decrease with frequency like in
the previous cases. They are located around the most am-
plified frequency. We notice some agreement in the flow
structures. Both resolvent and DMD mode show the main
axial wavenumber k = 1 and two cluster of turbulent activ-
ity. These clusters are located in the blowing section of the
transpiration. This is consistent with the areas of low and
high streamwise velocity observed in the planar snapshot of
Figure 2(d). We notice that the resolvent mode has more
complexity than the DMD mode, and it contains contribu-
tion of the forcing wavenumber k = 2. As in the large drag-
reducing case, we speculate that the additional high gain
induced by the large streamwise gradient of mean veloc-
ity limits the ability of the resolvent to reproduce energetic
structures with a rank-1 model.

CONCLUSIONS

The changes induced by transpiration in the most en-
ergetic flow structures of a pipe flow at the azimuthal
wavenumber n = 6 have been examined with the resolvent
analysis and DMD. In all cases, we have observed that the
most relevant flow structures correspond to a streamwise
wavenumber k = 1. In addition, both analyses have permit-
ted the observation of streamwise waviness in the large flow
structures and how the transpiration can inhibit fluctuation
in localized axial positions.

For large modifications of the flow, some disagree-
ments have been found between the radial shape of the ob-
tained resolvent and DMD modes. We have hypothesized
that a rank-1 resolvent model is insufficient to capture the
dynamics of the flow if there are various simultaneous, in a
spatial sense, sources of high amplification.

A link between the observed structures and the corre-
sponding mean flow characteristics is a subject of ongoing
work.
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