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ABSTRACT
The interaction between turbulence and surface ten-

sion is studied through direct numerical simulation of a
canonical multiphase flow. An initially flat interface is in-
serted into a triply periodic box of decaying homogeneous
isotropic turbulence, simulated for a variety of turbulent
Reynolds and Weber numbers on mesh sizes of 5123 and
10243. Unity density and viscosity ratios are used in or-
der to isolate the interaction between fluid inertia and the
surface tension force. Interface height correlations and liq-
uid volume fraction variance spectra are used to study the
spatial scales of corrugations on the interface. A case with
zero surface tension is first considered, yielding a passive
interface that moves materially with the fluid. The power
spectral density of the liquid volume fraction variance fol-
lows a κ−1 scaling, where κ is the wavenumber, which is
consistent with dimensionality arguments. In the presence
of surface tension, this corrugation spectrum follows a κ−1

scaling for large scales, but then deviates at a length scale
wich corresponds to the critical radius. A spectral analy-
sis of liquid volume fraction variance transfer is conducted,
shedding light on the role played by surface tension in this
process. Results will be used to deduce important ramifica-
tions for sub-grid scale models in large-eddy simulations of
liquid-gas flows.

INTRODUCTION
Interactions between turbulence and immiscible inter-

faces are ubiquitous in both natural environments and en-
gineering applications, such as the dynamics of the upper
ocean and primary liquid atomization in combustion de-
vices. Liquid fueled combustion is accomplished through
a variety of ways, such as pressure injection in Diesel en-
gines or coaxial air-blast injectors in aircraft engines. A
detailed description of primary atomization has remained
elusive, due in part to insufficient understanding of how
topologically complex interfaces modulate their surround-

ing flow fields. Primary air-blast atomization has been
understood in recent years as a mechanistic progression
of linear instabilities that destabilize the liquid core (Ray-
nal et al., 1997; Marmottant & Villermaux, 2004; Rayana
et al., 2006). However, while useful in certain canonical
flows, in particular in mostly parallel and laminar flows,
this sort of approach is less useful for describing atomiz-
ing liquids in complex geometries or in the presence of tur-
bulence. The assumptions of linear stability analysis break
down in presence of a significant non-zero normal velocity
at the interface. Full characterization and subsequent mod-
eling of liquid-gas turbulent flows in such complex scenar-
ios requires a more general theory of turbulent atomization.
Though numerical studies in this direction are limited, some
progress has been made. Turbulence-interface interactions
have been studied in two-dimensional simulations via an in-
terfacial particle-level set method Li & Jaberi (2009), high-
lighting the interplay between surface tension and baroclin-
ity near the interface, either of which can enhance turbu-
lent kinetic energy (TKE) dissipation in this region. Tron-
tin et al. (2010) isolate the interaction between fluid inertia
and surface tension by simulating a slab of fluid in a box of
three-dimensional decaying homogeneous isotropic turbu-
lence (HIT) with unity density and viscosity ratios, exam-
ining anisotropic effects of surface tension on surrounding
turbulence. A general theory of turbulent atomization must
encompass these types of effects, as well as other physical
processes by which a phase interface modulates a surround-
ing turbulent flow field.

The goal of the present study is to further the devel-
opment of turbulent atomization theory by studying numer-
ical simulations of canonical liquid-gas turbulent configu-
rations, isolating different physical mechanisms present in
the atomization process. As a starting point, we isolate the
interplay between a turbulent fluid and surface tension by
inserting an interface into a box of homogeneous isotropic
turbulence. Short-time deformation of an initially flat in-
terface in a field of decaying homogeneous isotropic tur-
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bulence (HIT) is studied in effort to develop a statistical
description of how surface tension impacts the resulting
corrugations that form on the interface. Results show that
interfacial corrugations follow classical turbulent scalings
up to a surface tension-defined length scale, after which
interface statistics are controlled by surface tension. The
surface tension length scale extracted from the simulations
agrees very well with the critical radius (Kolmogorov, 1949;
Hinze, 1955).

DIRECT NUMERICAL SIMULATIONS
The equation for the velocity fluctuation u′ simulated

herein is written as

∂u′

∂ t
+u′ ·∇u′ =−∇p

ρ
+ν∇2u′+Au′+

σ
ρ

γ δ (x−xΓ)n ,

(1)
where p is the pressure, ρ is the density, ν is the kinematic
viscosity, γ is the curvature of the interface, δ is the Dirac
delta function, xΓ is the point on the interface Γ closest to
x, n is the unit vector normal to Γ, and the forcing term
Au′ acts as a source term of turbulent kinetic energy. The
inclusion of the last term in Eq. (1) accounts for the sin-
gular surface tension force at the interface. The forcing
coefficient A = 1/3τ was introduced by Lundgren (2003)
and dictates the large-eddy turnover time of the flow field,
τ . Rosales & Meneveau (2005) have shown that this lin-
ear forcing methodology yields turbulence statistics that are
nearly indistinguishable from band-limited forcing in spec-
tral space.

Generation of homogeneous isotropic turbu-
lence

To generate a field of statistically stationary homoge-
neous isotropic turbulence (HIT), Eq. (1) is first evolved
with σ = 0 within the NGA code (Desjardins et al., 2008)
in a triply periodic box of size (2π)3. The resulting Taylor-
microscale Reynolds number Reλ = urmsλg/ν is based
on the root-mean-square velocity urms and the Taylor mi-
croscale λg =

√
10(η2L )1/3, where η is the Kolmogorov

length scale and L is the characteristic length scale of the
large eddies. This length scale L = k3/2/ε is defined in
terms of the TKE k, written as k = 3u2

rms/2, and ε , which is
the dissipation rate of TKE. All values of Reλ considered in
the present study exhibit a classical −5/3 inertial subrange.

Turbulent interfacial flow
Once the HIT becomes statistically stationary, the forc-

ing coefficient A in Eq. (1) is set to zero and the HIT decays
with an interface distribution that is initially flat. Because ρ
and ν are uniform everywhere, the only discontinuity is in
the pressure field, and we write the jump in pressure [p]Γ as
[p]Γ = σγ . The ghost fluid method (Fedkiw et al., 1999)
is used to handle the pressure jump across the interface,
and details regarding the implementation of Eq. (1) (for the
more general case of variable density) are provided by Des-
jardins et al. (2008).

The recent volume-of-fluid (VOF) method of Owkes
& Desjardins (2014) is coupled to NGA (Desjardins et al.,
2008) in order to capture the interface. The semi-
Lagrangian, flux-based VOF scheme provides discrete con-
sistency between mass and momentum transport through
geometric calculation of flux volumes. The resultant

scheme provides second order accuracy in space and time,
exact conservation of mass and momentum everywhere in
the domain, conservation of kinetic energy away from the
interface, and is combined with a second order curvature
calculation.

Uniform density and viscosity ratios utilized herein
isolate the interplay between the inertial content of the tur-
bulent fluid and the surface tension of the interface. We have
run with different values of σ , leading to a range of turbu-
lent Weber numbers, defined as Weλ = ρu2

rmsλg/σ . Table 1
summarizes the simulations.

Table 1. Parameters that characterize the HIT/interface
simulations.

Case Mesh Reλ Weλ

0 10243 313 ∞

1 10243 313 8.47

2 10243 313 1.36

3 10243 313 0.22

4 5123 194 8.47

5 5123 194 1.36

6 5123 194 0.22

THE IMPACT OF SURFACE TENSION ON THE
INTERFACE

The four cases shown in Fig. 1 are Case 0 – 3. Case
0 corresponds to Weλ = ∞ (σ = 0), for which the interface
moves materially with the fluid. It is observed from Fig. 1
that the large-scale variations of the interface are similar for
each case, while small scale interfacial corrugations become
increasingly suppressed as Weλ decreases. The same obser-
vation can be made for cases with Reλ = 194.

The spectral footprint of surface tension
The interfacial feature suppression by surface tension

that is evident in Fig. 1 is quantified by defining α(x) as
the volume fraction of fluid 1, i.e., the fluid beneath the
initially flat interface. The volume fraction fluctuation α ′
is computed as α ′(x) = α(x)−〈α(x)〉x,z, where 〈∗〉x,z de-
notes an average with respect to coordinates x and z. Denot-
ing y as the direction normal to the initially flat interface,
we compute the auto-covariance of α ′(x,y = 0,z) (i.e., at
the location of the initially flat interface) as Rα (rx,rz) =
〈α ′(x,0,z)α ′(x+ rx,0,z+ rz)〉x,z. Taking the Fourier trans-
form of Rα gives the liquid volume fraction variance spec-
trum R̂α , written as

R̂α (κx,κz) =
1

2π

∫ ∫
Rα (rx,rz)e−i(κxrx+κzrz) drxdrz , (2)

where κx and κz are the wavenumbers in x and z, respec-
tively. Figure 2(a) shows plots of the compensated spectrum
κR̂α (κ) for cases 0 – 3 plotted as a function of κη , where
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(a) Case 0 (b) Case 1

(c) Case 2 (d) Case 3

Figure 1. Topology of the interface after half a large-eddy turnover time. Color indicates velocity magnitude of the surround-
ing turbulent flow, ranging from 0 (red) to maximum value (white).

κ = (κ2
x +κ2

y )
1/2 and η is the Kolmogorov scale of the ini-

tial turbulent flow field. Note that the result looks the same
for cases 4 – 6 (at a lower Reλ ), so only the high Reλ re-
sults are shown for clarity. For case 0 in which the interface
moves materially with the fluid (no surface tension), κR̂α
is quite flat for roughly two decades before transport due to
low mesh resolution affects the spectrum. This is due to the
fact that even in the absence of physical surface tension, our
VOF transport scheme at low mesh resolution introduces
a numerical surface tension. This flat region means that
R̂α ∼ κ−1, which is consistent with the findings of Lesieur
& Rogallo (1989), who reported a range of κ−1 scaling for
the variance of passive scalars in turbulence, followed by
κ−5/3 scaling. The extent to which the passive temperature
field of Lesieur & Rogallo (1989) experiences a κ−1 de-
pends on the relative decay of temperature variance versus
kinetic energy. In the case of α with σ = 0, however, there
is no analog to diffusion, and R̂α ∼ κ−1 for all resolved
scales.

The spectra for cases 1 and 2 also show a κ−1 region,
but the presence of surface tension is evident through the
distinct change in scaling once a limiting wavenumber κσ

is reached. Once κ ≈ κσ , R̂α assumes a κ−2 scaling, as
evidenced by the clear κ−1 of the compensated spectra for
κ > κσ . In case 3, surface tension is so large that surface
corrugations are suppressed on even the largest scales, and
R̂α ∼ κ−2 for all scales. Note that we also observe the
same two-slope type of behavior in wave spectra (defined
similarly to the wave spectra of Phillips 1977) and surface
density variance spectra.

We observe that the critical wavenumber κσ is pre-
dicted very well by κσ = 2π/lσ , where

lσ ∼
(

σ3

ρ3ε2

)1/5

(3)

is the critical length scale below which interfacial corruga-
tions are suppressed by surface tension (Kolmogorov, 1949;
Hinze, 1955). The critical length scale lσ is extracted for all
simulations in Table 1 and compared to the predicted value
from Eq. (3), and good agreement is observed in Fig. 2(b).
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(a) κR̂α for the Reλ = 313 cases. Case 0 (thick solid); case 1
(dashed); case 2 (dash-dotted); case 3 (dotted). Thin horizontal lines
highlight regions ∼ κ0; the thin diagonal line shows κ−1 for com-
parison.
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case 6 (hexagram); best fit (line).

Figure 2. Liquid volume fraction variance spectra for
Cases 0 – 3 and comparison between predicted and mea-
sured lσ .

Interface curvature statistics
Surface tension suppresses interface corrugations and

therefore acts to prevent regions of high curvature. The
probability density function (PDF) of maximum curvature
γmax is shown in Fig. 3(a) for cases 0 – 6, defined as
γmax =max(|γ1|, |γ2|), where γ1 and γ2 are the two principal
curvatures. PDFs were also computed for the curvedness,

defined as
√

(γ2
1 + γ2

2 )/2 (Koenderink & van Doorn, 1992),
but the difference was negligible.

The peak for each PDF in Fig. 3(a) shifts to the left
as Weλ decreases, due to the prevention of high curvatures
by surface tension. The curvature distribution decreases be-
yond the peak value rapidly for the lowest Weber number,
which is in qualitative agreement with the relatively flat in-
terface in Fig. 1(d). Curvatures approaching 1/∆x (where
∆x is the mesh spacing) are orders of magnitude more prob-
able for case 0 than for all cases with surface tension, as
no physical mechanism prevents interfacial features on the
scale of the mesh size to develop. The PDFs look similar
for each pair of cases with the same Weλ , indicating that
the principal curvature distribution is not a strong function
of Reλ .
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Figure 3. PDFs of maximum principal curvature: case 0
(solid); case 1 (thick dashed); case 2 (thick dash-dotted);
case 3 (thick dotted); case 4 (thin dashed); case 5 (thin dash-
dotted); case 6 (thin dotted).

Interestingly, the PDFs for all cases show reasonable
collapse on one another when normalizing γmax by the crit-
ical length scale, as seen in the PDFs of lσ γmax in Fig. 3(b).
Cases 3 and 6 with the lowest Weλ peak near lσ γmax ≈ 3,
while cases 1, 2, 4, and 5 peak near lσ γmax ≈ 2. The col-
lapse of the peak values of γmax near lσ supports the idea
that turbulence corrugates the interface by wrinkling and
folding it to smaller and smaller scales, creating larger and
larger curvatures, until the critical length scale is reached,
and surface tension acts against further wrinkling and fold-
ing.

Liquid volume fraction variance transfer
We study the effect that surface tension has on the

transfer of liquid volume fraction variance by decomposing
the α field as α = α̃ +α ′, where α̃ is the result of filtering
α on a scale ∆ and α ′ is the sub-filter part of α . This allows
us to study the filtered quantity part as a function of the fil-
ter size ∆. The filtered quantity α̃ is obtained by taking the
convolution of α with the kernel g:

α̃(x) =
1
V

∫

V
α(x′)g

(∣∣x−x′
∣∣) dx′ . (4)
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We write the α transport equation as

∂α
∂ t

+∇ · (uα) = 0 , (5)

where u ·∇α = ∇ ·(uα) has been used due to ∇ ·u = 0 (i.e.,
solenoidal velocity field). Applying the filter in Eq. (4) to
this equation and different forms of it leads to

∂ α̃2

∂ t
+∇ ·

(
ũα̃2

)
=−∇ · (2α̃Rα )−Tα (6)

∂ α̃ ′2

∂ t
+∇ ·

(
ũα̃ ′2

)
= ∇ · (2α̃Rα −Rα2)+Tα (7)

Rα = ũα− ũα̃

Rα2 = ũα2− ũα̃2

Tα =−2Rα ·∇α̃ ,

where Eq. (6) governs the resolved variance α̃2 and Eq. (7)
governs the sub-filter variance α̃ ′2 = α̃2− α̃2.
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(a) Filter size ∆ normalized by η
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(b) Filter size ∆ normalized by lσ

Figure 4. 〈Tα 〉 for the Reλ = 313 cases. Case 0 (solid
line); case 1 (dashed line); case 2 (dash-dotted line); case 3
(dotted line).

Inspecting Eqs. (6) and (7), we see that first term on the
RHS of each equation is a conservative diffusion term. The

last term Tα , which appears with opposite sign in each equa-
tion, is non-conservative and represents the transfer rate of
α variance from the resolved to sub-filter scales. Figure 4(a)
shows the globally averaged 〈Tα 〉 for each Reλ = 313 case.
For case 0 with σ = 0, 〈Tα 〉 is constant and goes to zero
for ∆≈ η , indicating that the transfer decay is controlled by
lack of mesh resolution at the Kolmogorov scale. For cases
1 – 3, however, it is clear that η does not control the onset
of 〈Tα 〉 decay. Figure 4(b) shows that 〈Tα 〉 begins to decay
near a value of ∆/lσ ≈ 1, indicating that transfer of α vari-
ance is suppressed near the critical length scale. Note that
this trend cannot be observed for case 3, because lσ ∼ L and
there is no well-defined large length scale that is sufficiently
larger than lσ .

Backscatter of α variance by surface tension
The role played by surface tension in the α variance

and kinetic energy transfer process can be further under-
stood by examining the transfer terms that arise from a
model velocity field induced purely by surface tension. Not-
ing that the instantaneous acceleration of fluid due to sur-
face tension can be written as aσ = σγ∇α , we can write
such a model velocity as

umod =
∫ t0+∆t

t0
aσ dt ′ ≈ σγ∇α ∆t , (8)

where umod(t0) = 0 and ∆t is small such that the change
in γ and ∇α over ∆t is negligible. The mean α variance
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Figure 5. α variance transfer term computed from umod

for Reλ = 313 cases: case 0 (solid line); case 1 (dashed
line); case 2 (dash-dotted line); case 3 (dotted line).

transfer term 〈T mod
α 〉 is computed from umod for cases with

Reλ = 313 and shown in Fig. 5 (normalized by ∆t, which
is taken to be the simulation time step). Negative values in-
dicate a backscatter of α variance, i.e., a transfer from sub-
filter to resolved scales. Plotting the transfer as a function of
∆/lσ shows that the backscatter is maximum near the crit-
ical length scale, as shown in figure 6(a). The α variance
term has units of (time)−1, and a collapse of the data is ob-
served when 〈T mod

α 〉 is made dimensionless by the surface
tension time scale τσ = (l3

σ/σ)1/2, as shown in figure 6(b).
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Figure 6. α variance transfer term computed from umod

for Reλ = 313 cases: case 1 (dashed line); case 2 (dash-
dotted line); case 3 (dotted line).

CONCLUSION AND FUTURE DIRECTION
We have constructed a canonical multiphase turbulence

test case that allows us to isolate the interplay between sur-
face tension and fluid inertia. This approach allows us to
statistically examine the effects of surface tension on the
corrugations that form on the interface. Through spectra
of liquid volume fraction fluctuations and integrated inter-
face heights, it is observed that interface corrugations are
greatly suppressed on length scales smaller than the critical
radius (Kolmogorov, 1949; Hinze, 1955).

Probability density functions of principal curvature are
shown over a parameter space of Reynolds number and We-
ber number. All curves exhibit a peak value at the critical
radius, demonstrating the robustness of this length scale as a
delineation between interface corrugations generated by tur-
bulence and those suppressed by surface tension. The role
of surface tension in the cascade of liquid volume fraction
variance is explored through a filtering approach, highlight-
ing the importance of the critical length scale as a source of
backscatter. Work currently in development includes con-
ducting a similar filtering approach for the fluid momen-

tum, revealing an analogous source of backscatter for ki-
netic energy from sub-filter to resolved scales. Future work
will include a priori testing of sub-grid scale models for the
advancement of enhanced large-eddy simulations of liquid-
gas turbulent flows.
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