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ABSTRACT
A methodology for improved sensor-based velocity

field estimation from experimental data in bluff-body wakes
is presented and illustrated for the turbulent wake of a wall-
mounted square-base pyramid. The sensors monitor the lo-
cal surface pressure, while the velocity field is measured
with planar, time-resolved stereoscopic PIV. Starting from
the extended proper orthogonal decomposition technique,
key improvements of the spatio-temporal resolution of the
strongly modulated shedding include: (1) exploiting the
guaranteed orthogonality of the velocity expansion modes;
(2) using explicit modal cross-correlations between veloc-
ity and pressure fields; (3) determining objectively sensor-
signal time delays; and (4) benefiting from symmetry con-
siderations. Combined, these filtering operations yield a
near-optimal estimation from surface pressure signals. It
is shown that the mean-field paraboloid is better rendered
and the residual of the estimated coherent kinetic energy is
30% - 50% smaller than with previously proposed estima-
tion methods.

INTRODUCTION
Estimation of the velocity field from remote sensors,

such as wall pressures, is a valuable tool for constructing a
global estimation of the temporal and spatial evolution of
the most energetic coherent structures, such as shed vor-
tices. Typically, the signals from a few fixed sensors at
flow-domain boundaries (i.e. remote-sensors) are used to
synchronize the coherent contributions to the velocity field
fluctuations obtained from uncorrelated (independent) mea-
surements. Since the strain field distorts these structures,
it is critical to capture with fidelity the temporal relation-
ship between the remote sensor and the velocity fluctuation
throughout the flow domain.

Estimation is an important tool in numerous applica-
tions. Generally, estimators are integral parts of many con-
trol strategies. Moreover, a simulation of a configuration
may be used to calibrate an estimator forin situ monitoring
based on a remote-sensor. These techniques are very useful

for the purpose of global reconstructions from uncorrelated
velocity measurements, such as those obtained from sepa-
rate domains using particle image velocimetry (PIV). More
fundamentally, it is possible to investigate from these re-
constructed fields the global dynamics of coherent motions
in turbulent wakes as a step towards understanding or mod-
elling inter-scale energy transfer. It remains, however, that
the rendering of global dynamics is challenging. Herein,
several modifications to the extended proper orthogonal de-
composition EPOD (Borée, 2003) are presented for the pur-
pose of improving the representation of the global dynamics
from sensor-based estimations.

EPOD, a variant of the linear stochastic estimation
(LSE) technique of Adrian & Moin (1988), uses the sen-
sor POD coefficients with the velocity data for estimation.
If all sensor modes are used, EPOD reduces to LSE (Borée,
2003). These techniques have proven effective for study-
ing pressure-velocity correlations. Nevertheless, for highly
modulated quasi-periodic turbulent as considered here and
given generally limited information from experiments, both
techniques inconsistently render key elements of the flow
dynamics: the temporal evolution of energetic content and
the synchronization between different scales of motion.

An improvement to the synchronization between the
sensor signal and the velocity field for estimation pur-
poses can be obtained using the multi-time-delay technique
(Durgesh & Naughton, 2010) in combination with LSE or
EPOD. When carefully used, this approach results in better
estimation of the periodic component of the velocity field.
However, its implementation presents some challenges. The
quality of the estimation generally depends on using an
empirically determined optimal number of sensor signal
modes. More significantly, the estimated velocity modes
are non-orthogonal such that only the dominant (most ener-
getic) velocity mode is synchronized with the sensor signal.

The method proposed here is an improvement of the
EPOD technique aimed at optimizing the estimation by
maximizing the surface pressure-velocity correlation. To
this end, the velocity field is expanded onto an optimal or-
thogonal basis, thereby reducing the spatio-temporal corre-
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lations of the EPOD approach to purely temporal correla-
tions. With this great simplification, it is possible to easily
detect and extract the existing correlations and develop dif-
ferent treatments to improve the estimator (pressure) and
estimated (velocity) fields by recovering the phase relation-
ships between pressure and velocity POD modes. Taking
advantage of symmetries, the optimal space is defined fol-
lowing a procedure similar to Bourgeoiset al. (2013).

An experimental study of the wake flow for a surface-
mounted, square-based pyramid is used as a heuristic case.
Highly three-dimensional quasi-periodic wakes are gener-
ally observed for surface-mounted tapered bluff bodies pro-
truding a boundary layer. For low-aspect ratio (apex angles
between 15◦ and 70◦) tapered flat plates (Castro & Watson,
2004) and pyramids (Martinuzzi, 2008), coherent structures
are shed at a frequency scaled with the base width. Simi-
larly to cone geometries (Gaster, 1969), the shed structures
are highly distorted resulting in a low-frequency drift and
phase jitter. It will be shown that the proposed method cap-
tures the these modulations with the correct synchronization
to account for the spatial distortion of the shed vortices and
thus reliably render the dynamic behaviour.

EXPERIMENTAL SET-UP
The measurements were done in a suction type open-

test-section wind tunnel. The geometry and nomenclature
are schematically shown in Fig. 1. A square-base pyra-
mid of heighth = 39mm and widthd = 45mm (apex angle
ξ = 60◦) was mounted on a flat plate with a sharp leading
edge. The thickness of the boundary layer with the pyra-
mid removed wasδ/h = 0.25 as shown in Fig. 2. The
free-stream velocity wasU∞ = 10m/s, corresponding to a
Reynolds numberRed = U∞d/ν = 28,000, whereν is the
kinematic viscosity of air. The free-stream turbulence in-
tensity was approximately 0.8%.

A LaVision Flow Master planar stereoscopic PIV sys-
tem was used to measure the velocity vectors(u,v,w) along
horizontal (x− y) planes. The light source was a Photonics
Industries 15mJ 527nm Nd-YLF pulsed laser. Image pairs
were acquired with 2 Photron Fastcam SA4 cameras with
an image-pair time separation of 18µs at a rate of 500Hz,
capturing approximately 10 data points per shedding cycle.
Interrogation windows of 32×32 pixels with 50% overlap
(giving a vector spacing of 1.2mm) were used to calculate
the velocity vectors. For each plane, at least 6,000 image
pairs were obtained spanning 600 shedding cycles.

The fluctuating pressure at the pyramid side faces
(z/h = 0.22,0.45,0.68 at both faces) and the flat plate
(x/d = 1.5,2 andy/d =±0.25) were taken simultaneously
with the velocity data at a sampling rate of 10.24kHz.
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Figure 1. Schematic of geometry and nomenclature.

Figure 2. Boundary layer profile and root-mean-square
velocity. The displacement thicknessδ ∗, momentum thick-
nessθ and shape factorH = δ ∗/θ are also shown.

Flow Characteristics
Representative velocity and surface pressure time se-

ries and their corresponding power spectral density (PSD)
functions are shown in Fig. 3. Similar behaviour is ob-
served in both fields. The spectral peak associated with
quasi-periodic vortex shedding occurs at a non-dimensional
(Strouhal) frequency ofStd = fcd/U∞ = 0.231± 0.005.
Note the high modulation of the amplitude and the signal
short-term average (black line). The short term average is
obtained using a Gaussian filter defined in (1):

〈u〉G (t)=
∫ ∞

−∞
u(τ)g(t−τ)dτ, g(t)=

1√
2πσ

e−
t2

2σ2 . (1)

The bandwidth of the filter,σ is based on the integral
time-scale, 1/ fτ , corresponding to the first zero of the au-
tocorrelation function of the most energetic symmetric non-
harmonic POD mode from the unfiltered data. This mode
corresponds to a short-term average slow drift (Holmes
et al., 2012). Herefτ ≈ fc/6 and, by the Nyquist theorem,
the filter cut-off frequency is set to 2fτ yielding a bandwidth
σ =

√
1/6/ fc.

FLOW ESTIMATION
As a starting point, the salient features of EPOD

(Borée, 2003) are reiterated for continuity. First, the spatio-
temporal pressure data acquired at locationsX from Np sen-
sors are expanded onto the orthonormal basis:p(X, t) =

∑
Np

n=1 a(n)p (t)φ (n)
p (X), wherea(n)p (t) andφ (n)

p (X) denote the
nth temporal coefficient and spatial eigenvectors, respec-
tively. The extended velocity modes are then defined:

ψ(n)
u (x) = 〈a(n)p (t)u(x, t)〉/λ (n)

p , where〈·〉 denotes teh time-

averagig operator;λ (n)
p = 〈a(n)p (t)a(n)p (t)〉 and x are loca-

tions in the velocity field. Note theψ(n)
u (x) are generally

not orthogonal. The velocity, then, is estimated using:

û(x, test) =
Nmode

∑
n=1

a(n)p (test)ψ(n)
u (x) (2)

wheretest denotes the time in the trial data set andNmode =
Np if all extended modes are used.

Here, the EPOD technique is modified to optimize the
estimation by extracting the maximum pressure-velocity
correlations, with pressure sensors presumably not located
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Figure 3. Representative fluctuating velocity at (a)x/d = 2.25,y/d = 0.30,z/h = 0.70, and (b) pressure taken simultaneously.
The Power Spectral Density functions are shown on the right and are offset for clarity.

in the optimum positions as these have been chosen with
limited a priori information about the flow. To this end,
modifications are made in four respects: (1) change the
estimation basis to an optimal orthonormal basis; (2)
use sensor history to recover velocity cyclical behaviour;
(3) fix the phase of the slow-drift mode and (4) improve
estimations of the higher harmonics. The methodology is
described in detail in (Hosseiniet al., 2015) and is briefly
summarized here.

1. Expansion onto the optimal basis: The fluctuating ve-
locity component is expanded with a basis which, by con-
struction, is orthonormal following the procedure depicted
in Fig. 4. Briefly, after subtraction of the time-averaged
mean, the fluctuations are decomposed in symmetric and
anti-symmetric fields according to (w is treated asu):

us(x,y,z, t) = [u(x,y,z)+u(x,−y,z)]/2,

ua(x,y,z, t) = [u(x,y,z)−u(x,−y,z)]/2,

vs(x,y,z, t) = [v(x,y,z)−v(x,−y,z)]/2,

ua(x,y,z, t) = [v(x,y,z)+v(x,−y,z)]/2.

Figure 4. Algorithm used to obtain the orthonormal sub-
space onto which the velocity data is expanded.

This decomposition confers beneficial convergence be-
haviour fo the spatial modes (Holmeset al., 2012), which
is paramount to the accuracy of the estimation. The bene-
fits have been verified to outweigh the potential risk due to
crosstalk arising from experimental uncertainty.
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Figure 5. (a) Contours the velocity spatial modes at the
planez/h = 0.23. The dashed lines indicate negative val-
ues. Subscriptsa, s and∆ indicate the anti-symmetric, sym-
metric and slow-drift modes, respectively. (b) The Power
Spectral Density functions of the corresponding temporal
coefficients. Spectra are offset for clarity.

The anti-symmetric harmonic modes are determined
from a POD of the anti-symmetric field. The symmetric
field is decomposed into slow and fast-varying parts. The
slow-varying part is calculated using the Gaussian operator
of (1). The most energetic mode is taken to represent the
low frequency base-flow variations (slow-drift mode). The
fast-varying component is the leftover from the symmetric
field. POD is performed on this field to obtain symmetric
harmonic modes.

The five most energetic modes in the planez/h = 0.23
are shown in Fig. 5. The two most energetic modes corre-
spond to the anti-symmetric harmonic pair with frequency
fc, while the symmetric field yields the second harmonic
(2 fc). Note that this mathematical method does not require
this similarity to temporal Fourier modes. The third most
energetic mode is the slow-drift mode.

By expanding the velocity data onto the orthonormal
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basis as in (3), the correlations between the spatio-temporal

velocity data and the pressure coefficients,ψ(n)
u reduce to

correlations between the temporal coefficients as per (4):

û(x, test) =
Nu

∑
k=1

â(k)u (test)φ (k)
u (x) (3)

â(k)u (test) =
Nmode

∑
n=1

a(n)p (test)

〈
a(n)p (t)a(k)u (t)

〉

λ (n)
p

(4)

where φ (k)
u (x) and a(k)u (t) are, respectively, eigenmodes

and their corresponding temporal coefficients. This great
simplification significantly reduces the computational ef-
fort and makes it possible to explicitly detect and extract
the existing correlations in given data. Only the pressure
modes for which the correlation with the velocity field is
non-vanishing are used in the estimation. Hence, this ap-
proach eliminates the need for additional ranking criteria
for selection and reduces the experimental uncertainty in-
troduced by including non-contributing modes:cf. Sicot
et al. (2012); Clarket al. (2014). Here, when considering
only the non-vanishing correlations, the estimation of the
velocity coefficients for the first harmonic pair (k = 1,2)
and the slow-drift∆ reduce to

â(k)u (test) = a(1)p (test)

〈
a(1)p (t)a(k)u (t)

〉

λ (1)
p

+a(2)p (test)

〈
a(2)p (t)a(k)u (t)

〉

λ (2)
p

, (5)

â∆(test) = aG
p (test)

〈
aG

p (t)a∆(t)
〉

λ G
p

.

2. Sensor history for harmonic mode estimation: The
correlations between the pressure and velocity coefficients
are improved by forcing the convergence of the pressure
modes using the multi-time-delay approach (Lasagnaet al.,
2013). This approach also conveniently accounts for the
phase shift between the pressure and velocity harmonic co-
efficients (Durgesh & Naughton, 2010). Briefly, the spa-
tial information of the sensor data is obtained by treating
the time-delayed signal as originating from virtual sensors
located downstream of the physical sensor at locationX1.
The pressure of themth virtual sensorpm+1(Xm, t) is statis-
tically similar to that of the phsyical sensor, but delayed by
m∆τ: pm+1(Xm = X1−m∆X, t) = p1(X1, t −m∆τ), where
∆X = Uc∆τ. Uc is a characteristic convection velocity, but
its exact definition is not needed as it is absorbed when nor-
malizing the POD modes. ForN physical sensors, andM
time-delayed signals, the POD is performed for a system of
Np = N × (M+1) sensors.

In earlier LSE and EPOD studies of turbulent flows, it
has been shown that therre is an optmal value for the maxi-
mum time delayτT = M∆τ above which the estimation de-
teriorates: Durgesh & Naughton (2010); Sicotet al. (2012).
These parameters are usually selected empirically based on
various performance measures (Clarket al., 2014).

Criteria are proposed herein for selectingτT , M and
consequently∆τ. Intuitively, the addition of more time-
delayed signals results in mostly redundant data since pe-
riodic information is simply repeated. Hence, the optimal

time delay should beτT ≈ 1/ fc. Hosseiniet al. (2015) show
that 4 points per cycle are sufficient to resolve a harmonic
mode. Thus to resolve both the first and second harmonics
(average frequencyfc and 2fc, respectively), five points per
second-harmonic cycle over the first-harmonic period was
implemented:viz: ∆τ = 1/10fc andM = 10.

The error between the estimated coefficients of the
first harmonic pair and the actual coefficients is shown
in Fig. 6 for a time-delay ofτT = 1/ fc and various
M. Three independent experimental trials (measurements)
were conducted. The first two were used to determine
the correlation coefficients and POD velocity modes. The
third trial was then estimated. The error is defined as
in Durgesh & Naughton (2010): the sum of errors for
each coefficient normalized by the respective energyε =〈√

(â(1)u −a(1)u )2/2λ1+(â(2)u −a(2)u )2/2λ2

〉
. A signifi-

cant improvement is achieved when the optimalM is used
compared to the single-time estimation. Moreover, the error
is not reduced by using a smaller time-interval (largerM).

M

Figure 6. The error,ε, of estimated coefficients for the
first harmonic pair forτT = 1/ fc as a function of number of
time-delayed signals,M.

3. Fixing the phase of the slow-drift mode: The estima-
tion of the velocity field is improved by including a time
delay for the non-harmonic modes separately. Omitting this
step introduces an artificial and random phase lag between
the non-harmonic and harmonic fluctuations; resulting in a
misrepresentation of the coherent strain field and the dy-
namics of the coherent motion. For the slow-drift mode, the
time delayτ∆ is found from the peak of the cross-correlation
function of the pressure,aG

p , and the velocity,a∆, coeffi-
cients. The correct phase in the estimation ˆa∆ is recovered
as shown in (6).

â∆(test) = aG
p (test − τ∆)

〈
aG

p (t − τ∆)a∆(t)
〉

λ G
p

. (6)

4. Estimation of higher harmonics: A Galerkin pro-
jection of the Navier-Stokes equations on to the five most
energetic modes indicates that the second-harmonic coeffi-
cients are related to the first-harmonic coefficients through
Reynolds stress-like terms (Bourgeoiset al., 2013; Holmes
et al., 2012).The slow-drife mode is found empirically to
be uncorrelated to the second-harmonic coefficients. Thus,
taking advantage of the proposed orthogonal representation
of (3), the second harmonic coefficients can be estimated
according to (7):

â(k)u = ℓk11a(1)p a(1)p +ℓk22a(2)p a(2)p + ℓk12a(1)p a(2)p (7)

+qk3a(3)p +qk4a(4)p
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wherek = 3,4 denote the second harmonic modes of veloc-
ity and ℓki j , qki are the correlation coefficients. The phase
for the second harmonic is accounted for through the imple-
mented variation of the multi-time-delay approach.

Results
Comparisons are conducted to evidence th estima-

tion improvements achieved through the proposed modifi-
cations. In the following, EPOD refers to the traditional
technique using all available pressure modes. The next three
methods use only the five most energetic modes: EPOD-
OB using the orthonormal basis of (3); EPOD-MTD using
the multi-time-delay technique with optimal number of vir-
tual sensors and NEW for the proposed methodology, which
also includes phase-delays for non-harmonic modes and (7).

The measured and estimated velocity coefficients in the

(a(1)u ,a(2)u ,a∆)space are shown in Fig. 7 for a representative
cycle in the planez/h = 0.23. The limit cycle behaviour is

not recovered in the(a(1)u ,a(2)u ,a∆) space using traditional
EPOD or EPOD-OB. The latter shows a better estimation
of the slow-drift coefficienta∆ because of the cleaner modes
extracted through the use of symmetry and the orthonormal
projection. A significant improvement is achieved using
the multi-time-delay (EPOD-MDT) approach in recovering
the limit-cycle behaviour, but the estimated magnitude ˆa∆ is
significantly separated from the measured one.

Omitting the time shiftτ∆ between the harmonic and
slow-drift modes results in a poor estimation ofa∆ as
is clearly evident when comparing the estimated ˆa∆ and
measureda∆ as a function of the estimatoraG

p as in
Fig. 8a. However, usingτ∆ = 0.7/ fc as determined from
the pressure-velocity slow-drift cross-correlations as shown
in Fig. 8c, the estimate ˆa∆ using the NEW proposed ap-
proach much more closely followsa∆ as seen in Fig. 8b. It
is immediately seen from Fig. 7b, that the estimation for the
first-harmonic velocity coefficients follow more closely the
measured trajectory in the phase-space as a result of cor-
rectly recovering the phase of the slow-drift coefficient.

The optimality of the estimation is better indicated by
comparing the flow estimation̂u with the best achievable
resolutionuc by projecting the measured flow on the same
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EPOD - OB

Measured

EPOD - MTD

NEW

a
(1)

u

a
(1)

u
a
(2)

u

a
(2)

u

a

a

Figure 7. Behaviour of a typical cycle in(a(1)u ,a(2)u ,a∆)

space in the planez/h = 0.23.

five-mode subspace:

Rc =

∫
x(uc − û) .(uc − û)dA

〈∫x uc .uc dA〉 .

As seen in Fig. 9, the error in the estimation is signifi-
cantly reduced from∼ 30% using EPOD, to about 18% with
EPOD-MTD and∼ 16% with the NEW procedure.

The proposed methodology improves the rendering of
the flow topology and coherent motion as is illustrated in
Fig. 10. Here, the estimated sectional streamlines and vor-
tex core regions are compared to those for the measured
field for a randomly selected PIV snapshot in the plane
z/h = 0.23. Although the energetic content ofa∆ is rela-
tively small, its synchronization is critical and has impor-
tant consequences, for example, the better capture of the
location of the saddle pointS, the curvature of contingent
streamlines and the location of the focusF. Moreover, a bet-
ter estimation of the second harmonics using the proposed
NEW method improves the estimation of the shed vortexVs
especially in regions close to the centreline.

The scatter plot in the (a(1)u ,a(2)u ,a∆) space for EPOD-
MDT and the NEW methods are compared to measured
data in Fig. 11 for the planez/h = 0.23. The trajecto-
ries are shown for two randomly selected sample time-
intervals each spanning approximately one shedding cycle.
While both methods yield a mean field paraboloid, the tra-
jectory using EPOD-MDT is inconsistently over or under-
estimated. The estimation from NEW method, on the other
hand, closely follows the correct path along the vertical axis
(a∆ axis). Correctly estimating the trajectory in the mean
field paraboloid is of critical importance in capturing the
flow dynamics. From a technique perspective, the temporal
relationship between the slow-drift and harmonic compo-
nents is a key element in synchronizing uncorrelated PIV
measurements to obtain a physically representative recon-
struction of the flow field (Bourgeoiset al., 2013). Funda-
mentally, and perhaps more significantly, this relationship
between slow-drift and harmonic coefficients expresses the
energy transfer between these modes and must be correctly
captured for meaningful analysis (Holmeset al., 2012).

Concluding Remarks
A systematic and objective methodology to extract the

pressure-velocity correlations for the velocity estimation in
highly modulated quasi-periodic wakes is proposed. We
show how physically motivated spatial and temporal fil-
ters of the pressure and velocity fields improve the esti-
mation as measured in terms of resolved fluctuation energy
and achieved residuals. Most significantly, the dynamic be-
haviour is well captured in the modal subspace. This 2D
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Figure 9. Residual of coherent contributions to velocity
field in planez/h = 0.23. Horizontal line shows average.
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Figure 11. Scatter plot and trajectory of two sample cycles from measured and estimated velocity file for planez/h = 0.23.

estimation tool can be used to construct 3D time-variant ve-
locity fields, similar to Bourgeoiset al. (2013), and thus is
useful for exploring fundamental aspects of dynamics. Key
enablers for the improved methodology are: a careful recon-
struction of an orthonormal velocity basis; noise truncation
by a suitable subspace; introducing optimal time delay be-
tween sensor and flow for both harmonic and non-harmonic
contributions and better estimation of the higher-harmonics.
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